Programs and Courses specifications

Zagazig University Faculty of Pharmacy Biochemistry Department

Program and Course Specifications Master Degree

Programs and Courses specifications

Master Degree

Programs and Courses specifications

Program Specification

Program Specification

A-Basic Information

- 1- Program title: M.Pharm. Sci. Degree in Biochemistry
- 2- Program type: Single
- 3- Faculty/ University: Faculty of Pharmacy, Zagazig University
- 4- Department: Biochemistry
- 5- Coordinator: Assis. Prof./ Nahla Younis
- 6- Date of program specification approval: 2019
- 7- Teaching language: English
- 8. External Evaluator: Prof. Ola Elsayed
- 9. Internal Evaluator: Prof. Huda Elsayed

10- Academic Reference Standards:

 a. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).

b. The program ILOs were compared to Master of Biochemistry provided by **University of Southampton, UK.**

B- Professional Information

1- Program aims:

This Program is designed to extend graduates biochemical knowledge and skills necessary to apply the biochemical sciences to the provision in various settings including research Institutes, private and public hospitals and universities.

The program aims are summarized as follows:

1. Extend graduates knowledge of biochemistry, molecular biology, metabolic pathway and therapeutics.

- 2. Equip graduates with skills necessary to assess metabolic pathways in relation to human disease.
- 3. Commit life-long learning by enhancing and developing learning skills
- 4. Develop communication skills, time management, critical thinking, problem solving and decision making skills.
- 5. Develop research abilities through preparation of a complete clinical research.

Consistency of the program aims with the mission of Faculty of Pharmacy:

The faculty of Pharmacy, Zagazig University aims to provide the local and regional community with highly qualified, multidisciplinary and professional pharmacists with ethical values and able to participate in the development of drug industry and quality assurance as well as contribute to a distinguished health service to the society.

1.1 Graduate attributes:

The master degree of Biochemistry aims at developing the following attributes, upon successful completion of the program. The graduate will be qualified to:

- 1. Demonstrate ethical, legal, and civic responsibility as a researcher and member of the discipline.
- 2. Recall the fundamental knowledge and professional skills for proper application in the field of biochemistry
- 3. Analyze, evaluate information and solve professional problems
- 4. Perform experimental research, write and evaluate scientific reports
- 5. Develop continuous and self learning abilities

6. Demonstrate effective communication, decision making and leadership skills

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and develop skills appropriate for Biochemistry Master of sciences degree.

2-1- Knowledge and Understanding :

On successful completion of the Master degree Program, students will be able to:

A1-Illustrate basic theories and principles of biochemistry and other relevant aspects including: metabolic pathways, molecular biology, physiology, biotechnology, biostatistics.

A2- Describe physiological functions of the different body organs in healthy and disease states as well as basics of genetics.

A3- List pharmacological properties of drugs, mechanism of action, drug-drug interaction, toxic effects and risks and benefits of commonly used drugs.

A4- Outline basic principles of instrumental analysis.

A5- Illustrate the mutual role of biochemistry and its therapeutic and clinical applications for better patient outcomes.

A6- Outline recent research approaches in the field of biochemistry.

A7- Define ethics of scientific research

A8-Illustrate basic principles of quality assurance and good laboratory practice in experimental research.

A9-Outline methods of biostatistical analysis.

2-2 - Intellectual Skills:

On successful completion of the Master degree Program, students will be able to:

B1- Analyze and interpret data obtained from experimental research or published articles.

B2- Suggest significant solutions for biochemical findings and outcome errors based on academic background

B3- Integrate knowledge from biochemical pathways for therapeutic management of several diseases.

B4- Define a research gap, develop research hypotheses and laboratory protocol.

B5- Identify hazards and risks of experimental research

B6- Design the appropriate method for different biochemical measurements.

B7- Decide the best way to conduct experimental model based on the relevance, cost and availability.

2-3 - Professional and Practical Skills:

On successful completion of the Master degree Program, students will be able to:

C1- Perform routine experimental procedures including blood and tissue harvest.

C2- Conduct different biochemical techniques and measurements.

C3- Perform statistical analysis to evaluate experimental data.

C4- Develop writing skills for preparation of published papers.

C5- Cite relevant published data to support the written work.

C6- Apply good laboratory practice and safety guidelines in dealing with chemical reagents and biological samples.

2.4 - General and Transferable Skills:

On successful completion of the Master degree Program, students will be able to:

D1- Communicate efficiently and effectively both in writing and orally

D2- Apply the appropriate information technology.

D3- Demonstrate self-learning skills for continuous professional development.

D4- Retrieve information from different resources including online resources, library as well as printed literatures.

D5- Evaluate performance of others uses specific standards .

D6- Work effectively as a member of team

D7- Demonstrate team leadership skills.

D8- Develop time management, problem solving and decision making skills.

3- Academic Standards:

a. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).

b. The program ILOs were compared to the MSc Biochemistry provided by University of Southampton, UK.

Matrix1: Comparison of M. Pharm. Sci. Degree in Biochemistry with the Graduate attributes developed by NAQAAE

Attributes of the graduates	Attributes of the graduates	
(ARS, 2009)	(M. Pharm. Sci. Degree in	
	Biochemistry)	
1. Apply the specialized knowledge	2. Recall the fundamental knowledge	
he has acquired in his professional	and professional skills for proper	
practice	application in the field of	
	biochemistry	
2. Identify and solve professional	3. Analyze, evaluate information and	
problems	solve professional problems	
3. Show good communication and	6. Demonstrate effective	
leadership skills	communication skills, decision	
5. Take decisions using available	making and leadership skills	
information		
4. Use technology effectively in his	4.Perform experimental research,	
professional practice	write and evaluate scientific reports	
6. Use available resources efficiently		
7. Aware of his role in community	1. Demonstrate ethical, legal, and	
service and development	civic responsibility as a researcher	
8. Reflect commitment to integrity, credibility and accountability	and member of the discipline.	
9. Be a lifelong learner and able to	5.Develop continuous and self	
develop himself	learning abilities	

Matrix 2: Comparison of M. Pharm. Sci. Degree in Biochemistry

program with the Academic Reference Standard {ARS, 2009}

developed by NAQAAE

	ARS (2009)	Programme ILOs		
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	 A1- Illustrate basic theories and principles of biochemistry and other relevant aspects including: metabolic pathways, molecular biology, physiology, biotechnology, biostatistics. A2- Describe physiological functions of the different body organs in healthy and disease states as well as basics of genetics. A3- List pharmacological properties of drugs, mechanism of action, drug-drug interaction, toxic effects and risks and benefits of commonly used drugs. A4- Outline basic principles of instrumental analysis. 		
	2.1.2- Mutual influence between professional practice and its impact on the environment.	A5- Illustrate the mutual role of biochemistry and its therapeutic and clinical applications for better patient outcomes.		
	2.1.3- Scientific developments in the area of specialization.	A6- Outline recent research approaches in the field of biochemistry.		

	ARS (2009)	Programme ILOs	
	2.1.4- Moral and legal principles	A7- Define ethics of scientific research	
	for professional practice in the	A8-Illustrate basic principles of quality	
	area of specialization.	assurance and good laboratory practice	
	2.1.5- Principles and the basics of	in experimental research.	
	quality in professional practice in	A9-Recognize methods of biostatistical	
	the area of specialization.	analysis.	
	2.1.6- The fundamentals and		
	ethics of scientific research.		
S			
kill	2.2.1- Analyze and evaluate		
al S	information in the field of	B1- Analyze and interpret data obtained	
ctu	specialization and analogies to	from experimental research or published	
elle	solve problems	articles.	
Int	2.2.2- Solve specified problems	B2- Suggest significant solutions for	
	in the lack or missing of some	biochemical findings and outcome	
	information.	errors based on academic background.	
	2.2.3-Correlate and integrate	B3- Integrate knowledge from	
	different pharmaceutical	biochemical pathways for therapeutic	
	knowledge to solve professional	management of several diseases	
	problems.		
	2.2.4- Conduct research and write	B4- Define a research gap, develop	
	scientific report on research	research hypotheses and laboratory	
	specified topics.	protocol.	

	ARS (2009)	Programme ILOs	
	2.2.5- Evaluate and manage risks	B5- Identify hazards and risks of	
	and potential hazards in	experimental research	
	professional practices in the area		
	of specialization		
	2.2.6- Plan to improve	B6- Design the appropriate method for	
	performance in the field of	different biochemical measurements.	
	specialization.		
	2.2.7- Professional decision-	B7- Decide the best way to conduct	
	making in the contexts of diverse	experimental model based on the	
	disciplines.	relevance, cost and availability.	
ills		C1- Perform routine experimental	
l Sk		procedures including blood and tissue	
tica	2.3.1- Master basic and modern	harvest.	
raci	professional skills in the area of	C2- Conduct different biochemical	
d P	specialization.	techniques and measurements.	
l an		C2- Perform statistical analysis to	
ona		interpret data.	
essi		C4- Develop writing skills for	
rof	2.3.2- Write and evaluate	preparation of published papers.	
	professional reports.	C5- Cite relevant published data to	
		support the written work.	
	2.2.2 Assess methods and tools	C6- Apply good laboratory practice and	
	2.5.5- Assess methods and tools	safety guidelines in dealing with	
	existing in the area of	chemical reagents and biological	
	specialization.	samples.	

	ARS (2009)	Programme ILOs	
	2.4.1- Communicate effectively.	D1- Communicate efficiently and	
	2 Communicate enfectively.	effectively both in writing and orally	
	2.4.2- Effectively use information	D2- Apply the appropriate information	
	technology in professional	technology.	
	practices		
	2.4.3- Self-assessment and define	D3- Demonstrate self- learning skills for	
ills	his personal learning needs.	continuous professional development.	
e Sk	2.4.8- Continuous and self		
able	learning		
sfer	2.4.4-Use variable sources to get	D4- Retrieve information from different	
ran	information and knowledge	resources including online resources,	
d T	mormation and knowledge.	library as well as printed literatures.	
l an	2.4.5- Set criteria and parameters	D5- Evaluate performance of others	
eral	to evaluate the performance of	using specific standards.	
Gen	others		
•	2.4.6- Work in a team and lead	D6- Work effectively as a member of	
	teams carrying out various	team	
-	professional tasks.	D7- Demonstrate team leadership skills.	
		D8- Develop time management,	
	2.4.7- Manage time effectively.	problem solving and decision making	
		skills.	

Matrix 3: Comparison of M. Pharm. Sci. Degree in Biochemistry program with MSc Biochemistry provided by University of

MSc Biochemistry University of Program ILOs Southampton, UK. **Knowledge and understanding Knowledge and understanding** 1- Demonstrate critical awareness of A1- Illustrate basic theories and principles of biochemistry and other current issues in biochemistry, and comprehensive knowledge and relevant aspects including: systematic understanding of: the molecular metabolic pathways, biology, physiology, biotechnology, structure and function of biostatistics. biologically important molecules, and how these interact; how genetic A5- Illustrate the mutual role of information is stored, accessed and biochemistry and its therapeutic and used in a cellular context; the role of clinical applications for better metabolic pathways in the patient outcomes. production of energy and other A6- Outline recent research components essential for cell life approaches in the field of biochemistry. and growth; how biotechnology is used in research and medicine; A4- Outline basic principles of 2-Demonstrate knowledge and systematic understanding of the instrumental analysis. techniques used to study biological macromolecules; A2- Describe physiological 3-Demonstrate comprehensive knowledge of the composition and functions of the different body spatial organisation of the cell, organs in healthy and disease states

Southampton, UK.

including cell division; how cells	as well as basics of genetics.
communicate with each other; the	Partially covered
basis of homeostasis and other key	
physiological processes; how cells	
become specialised, form tissues and	
functions within the major organs.	
Not covered	A3- List pharmacological properties
	of drugs, mechanism of action,
	drug-drug interaction, toxic effects
	and risks and benefits of commonly
	used drugs.
Intellectual and Research skills	Intellectual skills
	Professional and practical skills
1. formulate and test hypotheses by	B4- Define a research gap, develop
planning, conducting and reporting a	research hypotheses and laboratory
programme of biochemical research	protocol.
in the form of a project either	R6- Design the appropriate method to
in the form of a project, cluter	Do- Design the appropriate method to
directly (from your own lab work or	analyze the biochemical
directly (from your own lab work or data mining), or indirectly through	analyze the biochemical measurements.
directly (from your own lab work or data mining), or indirectly through analysis of the work of others;	analyze the biochemical measurements.
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical	analyzethebiochemicalmeasurements.A8-Illustrate basic principles of
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical laboratory equipment to conduct	analyzethebiochemicalmeasurements.A8-Illustrate basic principles ofquality assurance and good
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical laboratory equipment to conduct experiments;	Do- Design the appropriate include to analyzeanalyzethebiochemical measurements.A8-Illustrate basic principles of quality assurance and good laboratory practice in experimental
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical laboratory equipment to conduct experiments;	analyze the biochemical measurements.
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical laboratory equipment to conduct experiments;	Do- Design the appropriate include to analyzeanalyzethebiochemical measurements.A8-Illustrate basic principles of quality assurance and good laboratory practice in experimental research.C1-Perform routine experimental
directly (from your own lab work or data mining), or indirectly through analysis of the work of others; 2. use a range of biochemical laboratory equipment to conduct experiments;	analyze the biochemical measurements. A8-Illustrate basic principles of quality assurance and good laboratory practice in experimental research. C1- Perform routine experimental procedures including blood and tissue

	C2- Conduct different biochemical	
	techniques and measurements.	
3. use computer software to record	A9-Recognize methods of	
and/or analyse biochemical data and	biostatistical analysis.	
determine their importance and	C3- Perform statistical analysis to	
validity;	interpret data.	
4. analyse critically and solve	B2- Suggest significant solutions for	
complex biochemical problems;	biochemical findings and outcome	
	errors based on academic background	
5. integrate your biochemical	B3- Integrate knowledge from	
knowledge base with other selected	biochemical pathways to suggest the	
disciplines such as physiology,	underlying mechanisms and	
biology, pharmacology or chemistry;	therapeutic management of several	
	diseases.	
6. independently integrate and	D4- Retrieve information from	
critically evaluate biochemical data	different resources including online	
from a wide range of sources,	resources, library as well as printed	
including primary source material in	literatures.	
biochemical journals and		
experimentation;		
7. demonstrate a systematic	B6- Design the appropriate method to	
understanding of how the boundaries	analyze the biochemical	
of biochemical knowledge are	measurements.	
advanced through research;	B7- Decide the best way to conduct	
	experimental model based on the	
	relevance, cost and availability.	
8. assess how your work can have	A7- Define ethics of scientific	

Zagazig university

Faculty of Pharmacy

consequences for yourself, others	research
around you, and the general public.	B5- Identify hazards and risks of
For laboratory work, this would	experimental research
mean conducting risk assessments	C6- Apply good laboratory practice
concerning the use of chemicals,	and safety guidelines in dealing with
animal material and laboratory	chemical reagents and biological
procedures; for in silico work,	samples.
understanding and executing data	
analysis responsibly, using	
university guidelines on working	
with public or private datasets, and	
the secure storage and sharing of	
data; for work communicating to the	
public, appreciating the complexities	
of giving clear and accurate	
information when discussing	
scientific subjects.	
9. demonstrate broad expertise in	B6- Design the appropriate method to
defined areas of biochemistry at the	analyze the biochemical
level of current research in the field;	measurements.
	B4- Define a research gap, develop
	research hypotheses and laboratory
	protocol.
10. critically evaluate the data and	B1- Analyze and interpret data
methodology of current published	obtained from experimental research
research in biochemistry and present	or published articles.
your conclusions.	C4- Develop writing skills for

	preparation of published papers.
	C5- Cite relevant published data to
	support the written work.
Transferable skills	General and transferable skills
1. communicate/present effectively	D1- Communicate efficiently and
both verbally and in writing on a	effectively both in writing and orally
range of biochemical topics to both	
specialised and non-specialised	
audiences;	
2. work with, and within, a group	D6- Work effectively as a member of
towards defined outcomes;	team
	D7- Demonstrate team leadership
	skills.
3. use information technology and	D2- Apply the appropriate
other resources to find, extract and	information technology.
synthesise information;	
4. solve problems relating to	D8- Develop time management,
qualitative and quantitative	problem solving and decision making
information;	skills.
5. learn independently through	D3- Demonstrate self-learning skills
critical enquiry;	for continuous professional
6. demonstrate you have the ability	development.
to undertake appropriate further	
training;	
7. manage resources and time;	D8- Develop time management,
	problem solving and decision making
	skills.

4-Curriculum Structure and Contents:

a- Program duration: 3-5 years

b- Program structure:

- The Masters program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- Each academic year consists of 2 semesters
- Minimum credit hours that can be registered each semester: 8 credit hours
- Maximum credit hours that can be registered each semester: 12 credit hours
- The program is structured as:

1- Courses: General (1 year) and Special

No. of credit hours for program courses:

- General : 20 credit hours(Compulsory: 12, Elective: (2x4) 8)
- Special: (3courses x4 hours) 12 credit hours

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic in: biochemical studies, metabolic abnormalities, and disease specific research. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

3- General University Requirements: 10 credit hours including:

- a- TOEFL/ IELTS (400 units)
- b- Computer course

Zagazig	university
Lugulig	university

Programs and Courses specifications

c- Study plan:

Course	Course Title	Credit	Program	Final exam
Code	Course The	hours	ILOs Covered	duration
	General Courses:		-	
M110	Molecular Biology	4	A1, B3, D2, D4	4 hours
M112	Physiology	2	A1, A2, B7, D1, D4	2 hours
M111	Biostatistics	2	A1, A9, B6, D1, D2	2 hours
M102	Instrumental analysis & chromatography II	4	A4, A8, B6, D2, D6, D7	4 hours
ME4	Biotechnology (Elective course)	4	A1, B3, D2, D4, D6, D7	4 hours
ME6	Drug-drug interaction (Elective course)	4	A2, A3, B3, D6, D8	4 hours
ME7	Drug induced disease (Elective course)	4	A2, A3, B3, D1, D4	4 hours
	Special Courses:			
Bsp2	Advanced Biochemistry	4	A1, A5, A6, B3, D2, D4, D6, D7	4 hours
Bsp1	Metabolism of individual tissue	4	A1, A5, B3, D3, D2, D4, D6	4 hours
Bsp3	Integration of metabolism	4	A1, A5, B3, D2, D3, D4	4 hours

		A1, A2, A5, A6, A7,	
		A9, B1, B2, B4, B5,	
Thesis	20	B6, B7, C1, C2,	
Thesis	50	C3,C4, C5, C6, D1,	
		D2, D3, D4, D5, D6,	
		D7, D8	

Elective courses: Drug-Drug interaction, Drug induced disease,

Biotechnology

5-Program admission requirements:

General Admission Conditions

- The Applicant should finish or being permanently or temporarily exempted from the military service and temporary exemption should be valid for at least one year from the date of beginning of study. (Exceptions apply for demonstrators and assistant lecturers).
- The applicant admission to the M.Sc. program should be no later than ten years from the time of graduation.
- Acquisition of an approval from the Faculty Council following an approval of concerned Departmental Board as well as Graduate Studies and Research Committee recommendation within a maximum of one month for any conditions stated by the concerned Departmental Board.

Admission Conditions for M.Sc. degree

In addition to the general admission conditions stated before, applicants are admitted to M.Sc. degree upon fulfillment of the following:

The applicants should be holders of Bachelor in Pharmaceutical Sciences from any Faculty of Pharmacy with a general grade at least good, affiliated to the Egyptian Universities or an equivalent degree granted by any institute recognized by the Supreme Council of Universities.

The Faculty council is allowed, on consent of the concerned Departmental Board as well as Graduate Studies and Research Committee, to accept student for registration of M.Sc. degree if he has got a diploma from one of the Egyptian Universities in one of the pharmaceutical sciences fields, Faculties, or Institutes that are recognized by the Supreme Council of Universities with a general grade of Good regardless his grades in bachelor degree.

Students should fulfill all the admission requirements stated by the concerned Departmental Board (ICDL certificate, local TOEFL certificate with a grade at least 400).

Admission has to be done within the period announced by the university.

Candidate thesis discussion isn't before one calendar year from research point registration.

Regulations to complete the program:

The Faculty Council, in compliance with the concerned Departmental Board as well as Graduate Studies and Research

Committee recommendation awards the M.Sc. degree upon fulfillment of the following requirements:

- Carrying out a deep research in the area of specialization for at least one or two calendar years and at most three years from the time of registration.
- The student has to succeed in all courses examinations.
- Acceptance of the research thesis by the Jury Committee according to statement 104 of universities regulating law.

Cancellation of Registration

The Faculty Board is allowed to cancel registration for M. Sc. programs in the following circumstances

- Student's failure to pass the course examinations for two times.
- Student's nonattendance or unsatisfactory progress (at least two annual reports) in research work being reported by the advisors and chief supervisor to the Departmental Board and forwarded to the Graduate Studies and Research Committee recommendation for approval of cancellation.
- Dissertation refusal by the Jury Committee.

Incapability of the student to graduate by the deadlines indicated

6-Student assessment methods:

Method	ILOS
Written exam	Knowledge and Understanding and Intellectual Skills
Oral exam	Knowledge and Understanding ,Intellectual Skills and General and Transferable Skills

Activity	Intellectual Skills and General and Transferable					
	Skills					
Seminars	Knowledge and Understanding ,Intellectual Skills &					
	General and Transferable Skills					
Follow up	Professional and practical Skills & General and					
	Transferable Skills					
Thesis and oral	Knowledge and Understanding, Intellectual Skills,					
presentation	Professional and practical Skills & General and					
	Transferable Skills					

Grade Scale	Grade point average value (GPA)	Numerical scale
A+	5	≥ 95%
А	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%
С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%
F	1	< 60%

7-Failure in Courses:

Students who fail to get 60% (1 point). In this case, students can register the course again and their grades are those obtained on repeating the course with maximum GPA being 3

8-Methods of program evaluation

Evaluator	Method	Sample
Internal evaluator:	Program	Program report
Prof. Huda El-Sayed	evaluation	Courses report
	Courses evaluation	
External evaluator:	Program	Program report
Prof. Ola Elsayed	evaluation	Courses report
	Courses evaluation	
Others methods	Matrix with ARS	100%
	International	
	Benchmark	
	Questionnaires	

Program coordinator: Assis. Prof./ Nahla Younis

Programs and Courses specifications

Special Courses

Programs and Courses specifications

Advanced biochemistry

Course specification of Advanced Biochemistry

- Program on which the course is given: Master of Pharmaceutical Sciences (Biochemistry)
- Major or Minor element of program: Major
- Department offering the program: Biochemistry Dept.
- Department offering the course:

Biochemistry Dept. 2019

• Date of specification approval:

<u>1- Basic information</u>:

Title: Advanced biochemistry

Code: BSp2

Credit hours: 4 hrs

Lectures: 4 hrs/week

Total: 4hrs/week

2-Overall aim of the course:

On completion of the course, the students will be able to outline clinical significance of tumor and inflammatory markers, clinical chemistry of geriatrics and pediatrics as well as the relation between disturbance in body fluids and various health problems.

3. Intended learning outcomes (ILOs) of Advanced Biochemistry:

A-Kr	nowledge and Understanding
<u></u>	Outline tumor and inflammatory markers with their clinical
aı	significance.
	Explain the role of drugs in development of some diseases and
a2	the use of other drugs in management of certain diseases.
a3	Discuss clinical chemistry of geriatric and pediatric patients.
a/	Recognize the source, physiologic purpose and clinical utility of
a4	laboratory measurements for body fluids.
B-Int	tellectual skills
h1	Analyze with good interpretation of laboratory measurements for
UI	tumor and inflammatory markers and body fluids.
h2	Correlate changes in extreme ages for better management of their
02	health problems.
D-G	eneral and transferable skills
d1	Use computer skills as internet and power point in preparation of
uı	course activities.
d2	Gain information from various sources as text books, scientific
u <i>4</i>	journals and internet.
d3	Work effectively as a member of a team.

<u>4. Course Content of Advanced Biochemistry:</u>

Week number	Lecture contents (4hrs/week)
1	Metabolic aspects of malignant diseases
2	Factors induced carcinogenesis (drugs- pollution)
	• Tumor markers (types and applications)
3	• Tumor markers (detection and frequently ordered
	tumor markers)
4	• Oxidative stress
5	• Inflammation (sources- causes- mechanism)
	• Inflammatory markers
6	• Inflammatory markers
	• Anti-inflammatory drugs
7	Midterm oral presentations
8	Clinical chemistry of geriatric patients
	• Biochemical and physiologic changes of aging
9	Clinical chemistry results of aging
10	Clinical chemistry of pediatric patients
	Childhood disorders
11	Case studies
12	Body fluids
	- Amniotic fluids- Cerebrospinal fluid
13• Body fluids	
	- Synovial fluid- Serous fluids
14	Final term oral presentations
15	• Final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self-learning activities
- Case study

<u>6- Student Assessment methods:</u>

Written exams assess:	a1, a2, a3, a4, b1and b2
Oral exam assess:	a1, a2, a3, a4, b1and b2
Activity assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 7,14
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A- Scientific papers.

B- Essential books:

- Clinical Chemistry: Principles, Techniques, and Correlations (Seventh edition/2013): Michael L Bishop, Edward P Fody, Larry E Schoeff.
- Clinical Chemistry: (eighth edition/2016): William J Marshall, Marta Lapsley, Andrew Day
- Clinical Biochemistry (Fundamentals of Biomedical Science) (second edition/2017): Nessar Ahmed

Programs and Courses specifications

c- Websites:

- Pubmed
- Sciencedirect
- Weily-interscience
- Research gate.
- EKB

8-Facilities required for teaching and learning:

Black (white) boards, computer, data show, textbooks, internet connection.

- Course Coordinator: Prof Dr/ Sousou Ibrahim
- Date: تم اعتماد توصيف المقرر بمجلس قسم الكيمياء الحيوية بتاريخ

	Matrix I of A	dvance	ed bi	och	em	istry	y			
		ILOs	of Ad	vanc	ed b	oioch	emis	try c	ours	se
	Course Contents	Knowledge	and und	lerstan	ding	Intellectual skills		General and transferable skills		
		a1	a2	a3	a4	b1	b2	d1	d2	d3
1	• Metabolic aspects of malignant diseases	x								
2	 Factors induced carcinogenesis (drugs- pollution) Tumor markers (types and applications) 	x	x			X				
3	• Tumor markers (detection and frequently ordered tumor markers)	x				X				
4	• Oxidative stress	X				Х				
5	 Inflammation (sources- causes- mechanism) Inflammatory markers 	x				X				
	Inflammatory markers								<u> </u>	
6	• Anti-inflammatory drugs	x	x			Х				
7	• Midterm oral presentations							x	X	X
8	 Clinical chemistry of geriatric patients Biochemical and physiologic changes of aging 			X			x			
9	• Clinical chemistry results of aging			X			X			
10	Clinical chemistry of pediatric patientsChildhood disorders			X			x			
11	• Case studies							x	x	x
12	Body fluids Amniotic fluids- Cerebrospinal fluid				x	X				
13	 Body fluids Synovial fluid- Serous fluids 				x	X				
14	• Final term oral presentations							x	X	x

azig university	
-----------------	--

Biochemistry department

Faculty of Pharmacy

		i			1	ľ		ľ	
15	• Final exam	X	x	X	x	X	x		

Matrix II of Advanced Biochemistry											
ARS		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment			
						Lecture	Self learning	Written exam	oral exam	Activity	
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	a3, a4	 Clinical chemistry of geriatric patients Biochemical and physiologic changes of aging Clinical chemistry of pediatric patients Childhood disorders Body fluids: Amniotic fluids- Cerebrospinal fluid- Synovial fluid- Serous fluids 	Textbooks, Scientific papers and self learning	Х	X	X	X		

Zagazig university

Biochemistry department

Faculty of Pharmacy

	2.1.2- Mutual influence between professional practice and its impact on the environment.	A5	a1, a2	 Factors induced carcinogenesis (drugs- pollution) Tumor markers (types and applications) Inflammation (sources- causes- mechanisms) Inflammatory markers Anti-inflammatory drugs 	Textbooks, Scientific papers and self learning	Х	X	x	x	
--	--	----	--------	--	---	---	---	---	---	--
Biochemistry department

Faculty of Pharmacy

2.1.3- Scientific developments in the area of specialization.	A6	a1, a3, a4	 Metabolic aspects of malignant diseases Factors induced carcinogenesis (drugs- pollution) Tumor markers (types and applications) •Tumor markers (detection and frequently ordered tumor markers) Oxidative stress Inflammation (sources- causes- mechanisms) Inflammatory markers Anti-inflammatory drugs Clinical chemistry of geriatric patients Biochemical and physiologic changes of aging Clinical chemistry results of aging Clinical chemistry of pediatric patients- Childhood disorders Body fluids Amniotic fluids- Cerebrospinal fluid- Synovial fluid- Serous fluids 	Textbooks, Scientific papers and self learning	х	х	X	x	
---	----	------------	---	---	---	---	---	---	--

Biochemistry department

Faculty of Pharmacy

Intellectual skills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	В3	b1, b2	 Factors induced carcinogenesis (drugs- pollution) Tumor markers (types and applications)- Tumor markers (detection and frequently ordered tumor markers) Oxidative stress Inflammation (sources- causes- mechanisms) Inflammatory markers Anti-inflammatory drugs Clinical chemistry of geriatric patients Biochemical and physiologic changes of aging Clinical chemistry results of aging Clinical chemistry of pediatric patients- Childhood disorders Body fluids Amniotic fluids- Cerebrospinal fluid- Synovial fluid- Serous fluids 	Textbooks, Scientific papers and self learning	Х	X	X	X	
---------------------	---	----	--------	---	---	---	---	---	---	--

Biochemistry department

Faculty of Pharmacy

nd transferable skills	2.4.2- Effectively use information technology in professional practices	D2	d1	Oral presentations- case studies	Textbooks, Scientific papers and self learning	Х	X		X
	2.4.4- Use variable sources to get information and knowledge.	D4	d2	Oral presentations- case studies	Textbooks, Scientific papers and self learning	Х	X		X
General a	2.4.6- Work in a team and lead teams carrying out various professional tasks	D6, D7	d3	Oral presentations- case studies	Textbooks, Scientific papers and self learning	Х	X		X

Programs and Courses specifications

Metabolism of individual tissues

Course specification of Metabolism of

individual tissues

A- Course specifications:

• Program on which the course is given: Master of Pharmaceutical Sciences

• Major or Minor element of program:	Major
• Department offering the program:	Biochemistry Dept.
• Department offering the course:	Biochemistry Dept
• Date of specification approval:	2019
1- Basic information:	
Title: Metabolism of individual tissues	Code: BSp1
Lectures: 4 hrs/week	Credit hours: 4 hrs/week

Total: 4 hrs/week

1- Overall aim of the course:

On completion of the course, the students will be able to: Illustrate principles of tissue metabolism, abnormalities relevant to tissue metabolism. The students will integrate metabolism background to identify clinical problems and interpret scientific results.

3. Intended learning outcome s (ILOs) of Metabolism of individual

tissues:

A-K	nowledge and Understanding
a1	Outline control mechanisms of metabolism.
a2	Describe metabolic roles and pathways in different organs.
.3	Identify the correlation between environmental changes and
as	metabolism.
a4	Illustrate up to date diagnosis of metabolic disorders.
B- In	tellectual skills
h1	Integrate metabolic background to determine metabolic
	abnormalities.
h2	Correlate the knowledge of different biochemical aspects to solve
02	health problems.
D-G	eneral and transferable skills
d1	Use computer skills as internet and power point in course
ui	activities.
42	Gain information from various sources as text books, scientific
u2	journals, internet
d3	Work effectively as a member of a team.
d4	Develop self learning skills

<u>4. Course Content of Metabolism of individual tissues</u>

Week number	Lecture contents (4hrs/week)
1	High energy compounds.
2 3	 Major metabolic control mechanisms. Control of enzyme levels. Control of enzyme activity. Activity Major metabolic control mechanisms. Compartmentation. Hormonal regulation
4	Receptors in the tissues.
5	Metabolic roles of organs - Liver - Kidney
6	 Metabolic roles of organs Brain – Heart
7	Metabolic roles of organs - Adipose tissue - Locomotor system (muscle- bone)
8	• Abnormalities in these tissues.
9	• Abnormalities in these tissues.
10	Biochemical and non biochemical diagnosis of metabolic abnormalities.

Faculty of Pharmacy

11	• Open discussion for some case studies.
12	• Activity (presentation of review articles)
13	Metabolic effect of smoking and
	malnutrition.
14	• Effect of environment on metabolism.
	- Heavy metals
	- Radiation
	- Insecticides
15	• Final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Case study

<u>6- Student Assessment methods:</u>

Written exams assess:	a1, a2, a3, a4, b1, b2
Oral exam assess:	a1, a2, a3, a4, b1, b2, d4

Activity assess: d1, d2, d3, d4

Assessment schedule:

Assessment (1): Activity	Week 2-12
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Lippincott's illustrated reviews: Biochemistry 5th edition 2011 by Richard A. Harvey and Denise R. Ferrier, Lippincott Williams & Wilkins, a Wolters Kluwer businessm, Philadelphia.

Biochemistry, 2nd edition, Mathews, van Holde.

Biochemistry, fifth edition, 2002, Jereny M. Berg, John L. Tymoczko, Lubert Stryer.

C-Suggested books: Fundamentals of biochemistry upgrade edition, 2002, Donald Voet, Judith G. Voet, Charlotte W. Pratt.

D- Websites: pubmed, Sciencedirect, Nejm, Weilyinterscience, EKB

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof Dr/ Rawia Sarhan
- Date: تم اعتماد توصيف المقرر بمجلس قسم الكيمياء الحيوية بتاريخ:Date •

Matrix I of Metabolism of individual tissues											
		II	LOs of	Meta	bolisr	n of ir	ndivid	ual ti	ssues	cours	e
		ŀ	Knowled	dge and	1	Intell	ectual		Gener	al and	
			underst	anding		ski	ills	Tı	ansfera	able ski	lls
Co	ourse Contents	a1	a2	a3	a4	b1	b2	d1	d2	d3	d4
1	High energy compounds.	X									
2	 Major metabolic control mechanisms. Control of enzyme levels. Control of enzyme activity. Activity 	X						X	X	X	X
3	 Major metabolic control mechanisms. Compartmentation. Hormonal regulation. 	X									
4	• Receptors in the tissues.	X									
5	 Metabolic roles of organs Liver – Kidney 		X								
6	 Metabolic roles of organs Brain – Heart 		X								
7	• Metabolic roles of organs		X								

Biochemistry department

Faculty of Pharmacy

	- Adipose tissue -										
	Locomotor system										
	(muscle- bone)										
8	• Abnormalities in this					x					
Ū	tissues.					A					
9	• Abnormalities in this					v					
-	tissues.										
	Biochemical and non										
10	biochemical diagnosis				v		v				
10	of metabolic						A				
	abnormalities.										
11	Open discussion for										
11	some case studies.			х							
	• Activity										
12	(presentation of							X	Х	Х	Х
	review articles)										
	• Metabolic effect of										
13	smoking and						х				
	malnutrition.										
	• Effect of										
	environment on										
	metabolism.										
14	- Heavy metals			X			X				
	Padiation										
	- Kaulation										
	- Insecticides										
15	• final exam	X	X	X	Х	х	х				

	Matrix II of Metabolism of individual tissues									
						Teachi lear metl	ng and ning hods	Method	l of ass	essment
	ARS	Program ILOs	Course ILOs	Course contents	Sources	Lecture	Self learning	Written exam	oral exam	Activity
edge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	a1, a2, a3	High energy compounds Major metabolic control mechanisms (Control of enzyme levels-Control of enzyme activity- Compartmentation- Hormonal regulation)- Receptors in the tissues- Metabolic roles of organs - Liver - Kidney- Brain- Heart- Adipose tissue- Locomotor system (Muscle-bone))	Textbooks, Scientific papers and self learning	Х	X	X	X	
Knowlee	2.1.2- Mutual influence between professional practice and its impact on the environment.	A5	a4	Biochemical and non biochemical diagnosis	Textbooks, Scientific papers and self learning	Х	X	х	Х	
Intellectual skills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	В3	b1, b2	Biochemical and non biochemical diagnosis- Metabolic effect of smoking and malnutrition- Effect of environment on metabolism (Heavy metals- Radiation- Insecticides)	Textbooks, Scientific papers and self learning	Х	X	x	x	

Biochemistry department

Faculty of Pharmacy

iferable skills	2.4.2- Effectively use information technology in professional practices	D2	d1	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	Х	X		X
al and trans	2.4.4- Use variable sources to get information and knowledge.	D4	d2	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	Х	Х		X
Gener	2.4.6- Work in a team and lead teams carrying out various professional tasks	D6	d3	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	Х	Х		X
	2.4.8- Continuous and self learning	D3	d4	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	Х	X		X

Programs and Courses specifications

Integration of metabolism

Course specification of Integration of Metabolism

Course specifications:

• Program on which the course is given:

Master of Pharmaceutical Sciences (Biochemistry)

- Major or Minor element of programs: Major
- Department offering the program: Biochemistry Dept.
- Department offering the course: Biochemistry Dept.
- Date of specification approval: 2019

<u>1- Basic information:</u>

Title: Integ	ration of metabolism	Code: BSp3			
Credit hour	rs: 4 hrs/week				
Lectures:	ectures: 4 hrs/week				
Total:	4hrs/week				

<u>2-Overall aim of the course:</u>

On completion of the course, the students will be able to: Illustrate interconnected metabolic pathways, principles of metabolic adaptation, Link between metabolic pathways and abnormalities that may rise and possible interactions between different nutrients and drugs and prevention strategies.

3. Intended learning outcomes (ILOs) of Integration of metabolism

A-Kr	nowledge and Understanding
a1	Illustrate interconnected pathways of metabolism.
a2	Identify the regulation of metabolic pathways.
.3	Demonstrate metabolic changes during fed/ fasting cycle and
as	diseases.
a4	Describe nutritional aspects of different diseases.
B-Int	tellectual skills
b1	Solve some health problems based on academic knowledge.
h2	Analyze and interpret biochemical data related to metabolic
02	changes during fed/ fasting cycle and diseases.
D-G	eneral and transferable skills
d1	Use computer skills as internet and power point in the activities.
d2	Gain information from various sources as text books, scientific
u2	journals and internet.
d3	Develop self learning capabilities

Programs and Courses specifications

<u>4. Course Content of Integration of metabolism</u>

Week number	Lecture contents (4hrs/week)
1	• Overview of the major metabolic pathways
2	Interconnected pathways
3	• Fed fasting cycle
4	• Effect of hormones on individual metabolic
	pathways
5	Fuel choice during exercise
6	• Ethanol alters metabolism
7	• Activity (Report and presentation)
8	• Obesity
9	Case studies on obesity
10	Diabetes mellitus
11	• Nutrition: nutritional consideration for
	specified individuals
12	• Nutrition: Drug - nutrient interaction
13	• Nutrition: Diet linked diseases + case studies
14	• Final term oral presentation
15	• Final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self-learning activities.
- Case study

<u>6- Student Assessment methods:</u>

Written exams assess:	a1, a2, a3, a4, b1, b2
Oral exam assess:	a1, a2, a3, a4, b1, b2
Activity assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 7,14
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A- Scientific papers.

B- Essential books:

- Jeremy M. Berg, John L. Tymoczko and Lubert Stryer. Biochemistry, 7th edition, 2012.
- Richard A. Harvey and Denise R. Ferrier: Lippincott's illustrated reviews: Biochemistry 7th edition 2017
- Ingrid Kohlstadt, Advancing Medicine with Food and Nutrients 2nd edition, 2012.

c- Websites:

- Pubmed
- Sciencedirect
- Weily-interscience
- Research gate.
- EKB

8-Facilities required for teaching and learning:

Black (white) boards, computer, data show, textbooks, internet connection.

- Course Coordinator: Prof Dr/ Hoda El-Saied
- Date: تم اعتماد توصيف المقرر بمجلس قسم الكيمياء الحيوية بتاريخ

	Matrix I of Integration of Metabolism									
	ILOs of Integration of Metabolism course								rse	
	Course Contents	Knc	owled lersta	ge an nding	d	Intellectual skills		General and transferable skills		
		a1	a2	a3	a4	b1	b2	d1	d2	d3
	• Overview of the major									
1	metabolic pathways	X								
2	• Interconnected pathways	X								
3	• Fed fasting cycle			х			X			
	• Effect of hormones on									
4	individual metabolic pathways		x							
5	• Fuel choice during exercise		x							
6	• Ethanol alters metabolism		x							
7	• Activity (review article)							X	x	X
8	Obesity			x			x			
9	Obesity and case study			x		x	X			
10	Diabetes mellitus			x						
	Nutrition: nutritional									
	consideration for specified									
11	individuals				x	x				
	• Nutrition: Drug- nutrient									
12	interaction				x					
	• Nutrition: Diet linked diseases									
13	+ case studies				x	x				
14	• Final term oral presentation							x	x	x
15	• Final exam	X	x	x	x	x	x			

	Matrix II of Integration of metabolism									
ARS		Program ILOs	Course ILOs	Course contents	Sources	Sources Teaching and learning methods		Method of assessment		
						Lecture	Self learning	Written exam	oral exam	Activity
ge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	a1- a2- a3	Overview of the major metabolic pathways- Interconnected pathways- Effect of hormones on individual metabolic pathways- Fuel choice during exercise- Ethanol alters metabolism - Fed fasting cycle- Obesity- Obesity and case studies- Diabetes mellitus	Textbooks, Scientific papers and self learning	x	X	X	X	
Knowledg	2.1.2- Mutual influence between professional practice and its impact on the environment.	A5	a4	Nutrition: nutritional consideration for specified individuals- Drug - nutrient interaction- Diet linked diseases + case studies	Textbooks, Scientific papers and self learning	x	x	X	X	

Biochemistry department

Faculty of Pharmacy

Intellectual skills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B3	b1, b2	Fed fasting cycle- Case studies on obesity, diabetes and diet linked diseases	Textbooks, Scientific papers and self learning	X	Х	X	x	
ıble skills	2.4.2- Effectively use information technology in professional practices	D2	d1	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	X	Х			x
nd transferat	2.4.4- Use variable sources to get information and knowledge.	D4	d2	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	X	Х			х
General a	2.4.3- Self-assessment and define his personal learning needs.	D3	d3	Activities and presentation of review articles	Textbooks, Scientific papers and self learning	X	Х			x

Programs and Courses specifications

General Courses

Programs and Courses specifications

Physiology

Course specification of Physiology

A- Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Biochemistry)
- Major or Minor element of program:
- Department offering the program:

Major Biochemistry Dept. Pharmacology Dept. 2019

Department offering the course:Date of specification approval:

<u>1- Basic information:</u>

Title: **Physiology** Lectures: 2 hrs/week Total: 2hrs/week Code: M112 Credit hours: 2 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to build up comprehensive knowledge on the overall human physiological functions of the different body organs in healthy and disease states.

<u>3. Intended learning outcome s (ILOs) of Physiology:</u>

Knov	Knowledge and Understanding						
a1	Describe the mechanical, physical, and biochemical functions of humans in good health, their organs, and the cells of which they are composed.						
a2	Illustrate the interrelationships between physiology and the society in the field of human health.						
Intell	Intellectual skills						
b1	Use literature and scientific evidences to take decisions concerning physiological problems						
Gene	General and Transferable skills						
d1	Communicate effectively in oral and written forms.						
d2	Retrieve information from different resources						

<u>4. Course Content of Physiology:</u>

Week number	Lecture contents (2hrs/week)					
1	Nerve & Muscle					
2	Autonomic Nervous System 1 (Sympathetic					
	nervous system)					
3	Autonomic Nervous System 2 (Parasympathetic					
	nervous system)					
4	Cardiovascular System 1 (Structure, functions					
	and properties of the heart)					
5	Cardiovascular System 2 (Heart rate, cardiac					
	output and blood pressure)					
6	Central Nervous System 1 (Structure of brain and					
	spinal cord)					
7	Central Nervous System 2 (Reflexes and pain)					
8	Kidney (Structure, function and urine formation)					
9	Respiratory System (Structure and functions of					
	the lung, mechanism of breathing)					
	Activity (Review article- Presentation)					
10	GIT (Functions of gastric secretions and					
	Neurohormonal regulation)					
11	Endocrine System 1 (Hypothalamus, thyroid,					

	parathyroid glands)
12	Endocrine System 2 (Adrenal gland and
	endocrine pancreas)
13	Blood physiology (Functions of blood cells and
	clotting mechanisms)
14	Membrane physiology (Structure and functions)
15	final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Case study

<u>6- Student Assessment methods:</u>

•	Written exam	to assess:	a1, a2, b1.
•	Oral exam	to assess:	a1, a2, b1, d1 and d2.
•	Activity	to assess:	d1, d2

Assessment schedule:

Assessment (1): Activity	Week 9
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

- Linda S. Costanzo (2007). Board Review Series: Physiology. Lippincott Williams & Wilkins. 4th ed
- Guyton physiology (2006) Arthur C. Guyton, John E. Hall, 11th edition Elsevier Inc.
- Clinical physiology (2005) An Examination Primer Ahis Banerjee, Cambridge University Press.

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

• Course Coordinator: Prof. / Hany El-Bassossy

Matrix I of Physiology course									
Week	Course Contents	Know ar unders	vledge nd tanding	Intellectual skills	General & Transferable skills				
		a1	a2	b1	d1	d2			
1	Nerve & Muscle	Х	Х	Х					
2	Autonomic Nervous System 1	Х	Х	Х					
3	Autonomic Nervous System 2	Х	Х	Х					
4	Cardiovascular System 1	Х	Х	Х					
5	Cardiovascular System 2	Х	Х	Х					
6	Central Nervous System 1	Х	Х	Х					
7	Central Nervous System 2	Х	Х	Х					
8	Kidney	Х	Х	Х					
9	Respiratory System- Activity	Х	Х	Х	x	Х			
10	GIT	Х	Х	Х					
11	Endocrine System 1	Х	Х	Х					
12	Endocrine System 2	X	X	Х					
13	Blood physiology	X	X	X					
14	Membrane physiology	Х	Х	Х					

Matrix II of Physiology										
ARS		Program II Os	Course ILOs	Course content	Source	Teaching and learning methods		Method of Assessment		
						Lectures	Self- learning	Written exam	Oral exam	Activity
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1 A2	a1, a2	All the topics	Scientific papers, text books and Internet	Х	Х	Х	Х	
Intellectual Skills	2.2.7- Professional decision-making in the contexts of diverse disciplines.	В7	b2	All the topics	Scientific papers, text books and Internet	х	Х	Х	Х	
General & Transferable	2.4.1- Communicate effectively.	D1	d1	Activity	Scientific papers, text books and Internet	х	Х		Х	Х

Biochemistry department

Faculty of Pharmacy

2.4.4- Use variable sources to get information and knowledge.	D4	d2	Activity	Scientific papers, text books and Internet	х	Х		Х

Programs and Courses specifications

Biostatistics

Major

Course specification of Biostatistics

A- Course specifications:

- Program on which the course is given: Pharmaceutical Sciences (Biochemistry)
- Major or Minor element of program:

• Department offering the program: Biochemistry Dept Department offering the course: Pharmacology Dept.

• Date of specification approval: 2019

<u>1- Basic information:</u>

Title: **Biostatistics** Lectures: 2 hrs/week Total: 2hrs/week Code: M111 Credit hours: 2 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to design a good research experiment, statistically analyze the results of research experiments, and interpret the results of statistical analysis of experimental data using statistical computer programs.
<u>3. Intended learning outcome s (ILOs) of Biostatistics:</u>

Knowledge and Understanding						
a1	Identify the fundamentals and principles of Biostatistics.					
a2	List the different methods of statistical analysis.					
Intel	Intellectual skills					
b1	Analyze statistically and interpret data obtained from pharmacological experiments in different forms.					
b2	Assess the types of decision errors that can occur during using statistical tests.					
Gene	General and Transferable skills					
d1	Communicate effectively with others					
d2	Develop IT skills					

<u>4. Course Content of Biostatistics:</u>

Week number	Lecture contents (2hrs/week)					
1	Computer-aided general Principle of biostatistics 1					
2	Computer-aided General Principle of biostatistics 2					
3	Computer-aided Presentation of data					
4	Computer-aided Descriptive statistics					
5	Computer-aided Measures of central tendency					
6	Computer-aided Measures of variability					
7	Computer-aided Normal frequency distribution					
	curve					
8	Probability					
9	Comparing of two means					
	Activity					
10	Comparing of more than two means					
11	Chi square test					
12	Computer-aided Regression and correlation					
	analysis					
13	Complex analysis					
14	Criteria of good experimental design					
15	final exam					

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Computer statistical program training
- Open discussion

<u>6- Student Assessment methods:</u>

- Written exam to assess: a1, a2, b1 and b2.
- Oral exam to assess: a1, a2, b1, b2 and d1.
- Activity to assess: d1, d2

Assessment schedule:

Assessment (1): Activity	Week 9
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

1- <u>References and books:</u>

A-Scientific papers

B- Essential books:

• Danial W (1995). Biostatistics: A foundation for analysis in health science. (6th ed.) New York: John Wipij & sensing

C- Electronic resources

• Dom Spina (2003) Statistics Workshop distance learning material. British Pharmacological Society University of Manchester

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

• Course Coordinators: Prof. Hany Elbassosy

Biochemistry department

Faculty of Pharmacy

Matrix I of Biostatistics course							
Week number	Course Contents	Knowle underst	edge & anding	Intell sk	ectual ills	General & Transfer able skills	
		a1	a2	b1	b2	d 1	d2
1	General principle of biostatistics 1	x	Х				
2	General principle of biostatistics 2		х				
3	Presentation of data	х		Х			
4	Descriptive statistics	х		Х			Х
5	Measures of central tendency	х					Х
6	Measures of variability	х					Х
7	Normal frequency distribution curve	х		Х			х
8	Probability	x		Х			Х
9	Comparing of two means- Activity	х	х	Х		Х	х
10	Comparing of more than two means	x	X	Х			Х
11	Chi square test	x	X	Х			х
12	Regression and correlation analysis	x	X	X			Х
13	Complex analysis		X	Х			X
14	Criteria of good experimental design				х		

	Matrix II of Biostatistics									
ARS		Program	Course	Course contant	Source	Teaching and learning methods		Method of Assessment		essment
		ILOs	ILOs	Course content		Lectures	Self learning	Written exam	Oral exam	Activity
and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	al	General principle of biostatistics 1 - Presentation of data - Descriptive statistics - Measures of central tendency - Measures of variability - Normal frequency distribution curve - Probability - Comparing of two means - Comparing of more than two means - Chi square test - Regression and correlation analysis	Scientific papers, text books and Internet	Х	Х	X	X	
Knowledge	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	А9	a2	General principle of biostatistics 1 - General principle of biostatistics 2	Scientific papers, text books and Internet	Х	X	X	X	

Biochemistry department

Faculty of Pharmacy

Intellectual Skills	2.2.6- Plan to improve performance in the field of specialization.	B6	b1 b2	Presentation of data - Descriptive statistics - Normal frequency distribution curve - Probability - Comparing of two means - Comparing of more than two means - Chi square test - Regression and correlation analysis - Complex analysis Criteria of good experimental design	Scientific papers, text books and Internet	Х	X	х	X	
	2.4.1- Communicate effectively.	D1	d1	Activities- Revision	Scientific papers, text books and Internet	X	X		X	х

Biochemistry department

Faculty of Pharmacy

General & Transferable	2.4.2- Effectively use information technology in professional practices	D2	d2	Activities- Revision	Scientific papers, text books and Internet	X	Х	X	х
Ğ									

Programs and Courses specifications

Drug interaction

Course Specification of Drug interaction

A- Course specifications:

•	Program (s) on which the course is given: (Biochemistry)	Pharmaceutical Sciences
•	Major or Minor element of program: Department offering the program:	Major Biochemistry
	Department offering the course:	Pharmacology
	Date of specification approval:	2019
	B- Basic information:	
	Title: Drug interaction	Code: - <mark>ME6</mark>

• Lectures : 4 hrs/week

• Practical:---

Credit Hours:

- Tutorials: ---
- Total: 4 hrs/week

<u>C- Professional information:</u>

<u>1-Overall Aims of the Course:</u>

On completion of the course, students will be able to describe the mechanisms of drug interactions , understand the clinical significance of interactions between drugs and demonstrate how to manage different types of drug interactions

Programs and Courses specifications

2-Intended Learning Outcomes of Drug Interaction (ILOs):

Кпом	Knowledge and Understanding					
a1	Describe the basic mechanisms of drug interactions					
a2	Outline the clinical significance of drug interactions					
a3	Enumerate the general methods for the management of drug interactions					
Intell	ectual skills					
b1	Differentiate between adverse and beneficial interactions of drugs					
b2	Suggest novel methods for the management of drug interactions					
Transferable and general skills						
d1	Demonstrate critical thinking and decision making					
d2	Work effectively as a member of a team					

Programs and Courses specifications

D- Contents:

Week	Lecture
No.	(2 hrs/week)
1	Overview of drug interactions
2	Mechanisms of drug interactions
3	Management of drug interactions
4	-Drug-food and drug-herb interaction
5	- Drug interaction of antibiotics
6	- Drug interaction of CVS acting agents
7	case presentation (activity)
8	- Drug interaction of respiratory system –acting agents
9	- Drug interaction of CNS acting agents
10	- Drug interaction of CVS acting agents
11	- Drug interaction of GI tract acting agents
12	- Drug interaction of agents used for kidney disorders
13	- Drug interaction of endocrine system- acting agents
14	- Drug interaction of agents used for obesity and anemia
15	final exam

E- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion

F- Student Assessment Methods:

1.	Written exam to assess:	a1, a2, a3, b1, b2, d1
2.	Oral exam to assess:	a1, a2, a3, b1, b2, d1
3.	Activity	a1, a2, a3, d1, d2

Assessment schedule:

Assessment (1): Activity	Week 7
Assessment (2): Written exam	Week 15
Assessment (4): Oral exam	Week 15

Weighting of Assessment

Assessment method	Marks	Percentage
Written exam	75	75%
Oral exam	15	15%
Activity	10	10%
TOTAL	100	100%

G- Facilities Required for Teaching and Learning:

Black (white) board, Data show.

H- List of References:

- **1- Essential books:**
- i- Richard A. Harvey, Michelle A. Clark, Lippincott's Illustrated

Reviews Pharmacology 5th ed. Lippincott Williams & Wilkins,

2012

2- Recommended books:

- i- H.P. Rang, M.M.Dale, J.M. Ritter& R.J. Flower ed. RANG & DALEPharmacology 6th 2008 Churchill 2. Livingstone Elsevier London.
- ii- Katzung, B.G., ed. Basic and Clinical Pharmacology. 9th ed. New York : McGraw Hill, 2006.
- iii- Bennet P.N., and M.J. Brown, eds. Clinical Pharmacology. 10th ed.London : Churchil Livingstone, 2006.
- iv- Hardman J.G., L.E. Limbrid, and A.G. Gilman, eds. Goodman & Gilman's the Pharmacological Basis of Therapeutics. 10th ed. New York : McGraw Hill, 2006.
- v- Luellmann H., L. Hein, K. Mohr, and D. Bieger. Color Atlas of Pharmacology. 3rd ed. Stuttgart : Thieme, 2005.
- vi- Brenner, G.M. and Steven, C.W., Pharmacology, 3rd ed., 2010
- **3-** Periodicals and websites:
- British J Pharmacol,
- European J Pharmacol,
- Pharmacology,
- Pharmacology and Toxicology)
- Pubmed.com
- www.medconsult.com/www.pharmanet.com

Course Coordinators: Ass.Prof. / Shaimaa El-Shazly

Matrix I of Drug interaction course									
	ILOs for drug interaction course								
Course contents		knowledge & understanding		intellectual skills		Transferable general ski	and lls		
Lectures		a1	a2	a 3	b1	b2	d1	d2	
1	Overview of drug interactions		x						
2	Mechanisms of drug interactions	X							
3	Management of drug interactions			X					
4	Drug-food interactions	x	X	×			x		
5	Drug-smoking interactions	X	X	×			X		
6	Drug- environment interactions	x	x	x			X		
7	Drug interactions of anti-infective agents	x	x	x			X		
8	Drug interactions of cardiovascular acting agents	x	x	x			x		
9	Drug interactions of CVS acting agents	x	x	x			X		
10	Drug interactions of CNS acting agents	x	x	x			x		
11	Drug interactions of endocrine acting agents	x	x	x					
12	Case studies				X	x	x	X	
13	Case studies				X	X	X	X	

			Matrix II of Drug interaction course							
Academic Reference		Program Course ILOs ILOs		ourse Course contents	Source	Teaching & learning methods		Method of assessment		
						Lecture	Self learning	Written exam	Oral exam	Activity
2.1.1	Theories and fundamentals related to the field of learning as well as in related areas.	A2 A3	a1 a2 a3	All topics	Scientific papers, text books and Internet	x	x	x	x	
2.2.3	Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B3	b1, b2	Case study	Scientific papers, text books and Internet	x		x	x	
2.4.7	Manage time effectively	D8	d1	Case study	Scientific papers, text books and Internet	x			X	x
2.4.6	Work in a team and lead teams carrying out various professional tasks.	D6	d2	Case study	Scientific papers, text books and Internet	x			x	x

Biochemistry department

Faculty of Pharmacy

Programs and Courses specifications

Drug-Induced Disease

Major

2019

Course specification of Drug-Induced Diseases

A- Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Biochemistry)
- Major or Minor element of program:
- Department offering the program:
- Department offering the course:
- Date of specification approval:

<u>1- Basic information:</u>

Title: **Drug Induced Diseases** Lectures: 4 hrs/week Total: 4hrs/week Code: ME7 Credit hours: 4 hrs/week

Biochemistry Dept

Pharmacology Dept.

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to define the mechanisms, symptoms and diagnosis of drug-induced diseases and possible preventative methods.

<u>3. Intended learning outcome s (ILOs) of Drug Induced</u> <u>Disease:</u>

Knov	wledge and Understanding							
a1	Explain the basics of drug kinetics, dynamics and adverse effects							
a2	Identify common diseases induced by drugs and the associated risk factors.							
Intell	Intellectual skills							
b1	Suggest possible ways to protect against or minimize some common drug-induced diseases.							
b2	Specify the hazards of therapeutic regimens and how to properly select suitable regimens in different pathological conditions.							
Gene	General and Transferable skills							
d1	Communicate effectively with others							
d2	Retrieve information from different resources							

<u>4. Course Content of Drug Induced Disease:</u>

1	Introduction to drug induced-diseases
2	Drug-induced hepatotoxicity (Toxic response of the liver and mechanism of toxicity)
3	Drug-induced hepatotoxicity (Diagnosis and management)
4	Drug-induced nephrotoxicity (Toxic response of the kidney and mechanism of toxicity)
5	Drug-induced nephrotoxicity (Diagnosis and management)
6	Drug-induced CVS diseases (Toxic response of the heart and vascular system)
7	Drug-induced CVS diseases (Mechanism of toxicity)
8	Drug-induced CVS diseases (Diagnosis and treatment)
9	Activity
10	Drug-induced CNS diseases (Structure and functions of brain blood barrier, toxic response of brain and spinal cord)
11	Drug-induced CNS diseases (Mechanism of toxicity)
12	Drug-induced CNS diseases (Diagnosis and treatment)

13	Presentations
14	Open discussion & revision
15	Final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

- Written exam to assess: a1, a2, b1 and b2.
- Oral exam to assess: a1, a2, b1, b2, d1 and d2.
- Activity to assess: d1 and d2.

Assessment schedule:

Assessment (1): Activity	Week 9
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

- Basic and clinical Pharmacology; 10th Edition, Kantzung B.G McGraw Hill Medical Publishing Division 2007.
- Drug-Induced Diseases: Prevention, Detection, and Management, 2nd Edition, Tisdale J. and Miller D. American Society of Health-System Pharmacists 2010.

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

• Course Coordinators: Prof. Dr. Ahmed Fahmy

Faculty of Pharmacy

Matrix I of Drug Induced Disease course									
Week number	Course Contents	Knowledg understan	Intell sk	ectual ills	General & Transferable skills				
		a1	a2	b1	b2	d1	d2		
1	Introduction to drug induced- diseases	Х							
2	Drug-induced hepatotoxicity (Toxic response of the liver and mechanism of toxicity)	X							
3	Drug-induced hepatotoxicity (Diagnosis and management)	X			Х				
4	Drug-induced nephrotoxicity (Toxic response of the kidney and mechanism of toxicity)	X			х				
5	Drug-induced nephrotoxicity (Diagnosis and management)	X							
6	Drug-induced CVS diseases (Toxic response of the heart and vascular system)		Х	Х					
7	Drug-induced CVS diseases (Mechanism of toxicity)		X	Х					
8	Drug-induced CVS diseases (Diagnosis and treatment)		Х	Х					
9	Activity		X	X		х	Х		
10	Drug-induced CNS diseases (Structure and functions of brain blood barrier, toxic response of brain and spinal cord)		X	X					
11	Drug-induced CNS diseases (Mechanism of toxicity)		X	Х					
12	Drug-induced CNS diseases (Diagnosis and treatment)		X	Х					
13	Presentations	X	Х	X	Х				
14	Open discussion & revision	X	X	X	X	x	X		

	Matrix II of Drug Induced Disease									
ARS		Program	Course	Course content	Source	Teaching and learning methods		Method of Assessment		
		ILOs	ILOs			Lectures	Self- learning	Written exam	Oral exam	Activity
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A2 A3	a1 a2	Introduction to drug- induced disease Drug-induced hepatotoxicity 1 Drug-induced nephrotoxicity 1 Drug-induced 1 CVS toxicity Drug-induced 1 CNS toxicity	Scientific papers, text books and Internet	х	Х	х	х	
Intellectual skills	2.2.3- Correlate and integrate different pharmaceutical knowledge to solve professional problems.	В3	b1, b2	Drug-induced hepatotoxicity 2 Drug-induced nephrotoxicity 2 Drug-induced 3 CVS toxicity Drug-induced 3 CNS toxicity	Scientific papers, text books and Internet	Х	Х	Х	Х	
General & Transferable chille	2.4.1- Communicate effectively.	D1.	d1	Activity	Scientific papers, text books and Internet	X	Х		Х	Х

Biochemistry department

Faculty of Pharmacy

	2.4.4- Use variable sources to get information and knowledge.	D4.	d2	Activity	Scientific papers, text books and Internet	Х	х		х	X
--	--	-----	----	----------	---	---	---	--	---	---

Programs and Courses specifications

Instrumental Analysis & Chromatography II

Course specification of Instrumental Analysis & chromatography II

A- Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Biochemistry)
- Major or Minor element of program:
- Department offering the program:

Major Biochemistry Dept Analytical Chemistry. 2019

Department offering the course:Date of specification approval:

2- Basic information:

Title: Instrumental Analysis Lectures: 4 hrs/week Total: 4 hrs/ week

Code: M102 Credit hours: 4 hrs/ week

<u>2- Overall aim of the course</u>:

On completion of the course, the students will be able to outline the basis and applications of instrumental analysis and describe theories, operation, pharmaceutical and biological applications of instrumental techniques.

3. Intended learning outcome s (ILOs):

A- K	nowledge and Understanding
91	Outline the basis, theory and operation of different instrumental
a1	techniques of analysis.
	Describe different pharmaceutical and biological applications of
a2	instrumental techniques.
B- In	tellectual skills
h	Select the most appropriate instrumental technique in
D1	pharmaceutical and biological assay.
ha	Integrate knowledge gained from different instrumental techniques
02	in designing analytical system for analytes of complex nature
D-G	eneral and Transferable skills
d	Acquire Computer skills like preparing presentations and
u	collecting information through different data-bases.
d ₂	Work effectively as a member of team
d ₃	Demonstrate leadership capability

<u>4. Course Contents:</u>

Week No.	Content
1	Instrumental Analysis: *Introduction *Principles
2	[Ultraviolet (UV)and Visible spectrophotometry
	*Theory
	*Instrumentations
3	[Infrared (IR) spectroscopy].
	*Theory
	*Instrumentations
4	Applications of UV and IR
5	Nuclear magnetic resonance (NMR).
	*Theory
	**Instrumentations
6	Mass-spectrometry (MS)
	*Theory
_	*Pharmaceutical and biological applications.
7	Applications of NMR and MS
8	Electrochemistry
	Conductometry, Potentiometry.
	*Theory
	*Pharmaceutical and biological applications.
9	Chromatography:
	*Introduction *Classification
10	Quantitative and Qualitative Chromatographic techniques
10	*Basis
	*Pharmaceutical and biological applications
11	HPLC
11	*Basis
	*Types
	Isocratic flow and gradient elution
	Particle size, Pore size, Pump pressure, detectors and
	applications
12	Gas Chromatography
	*Basis
	*Pharmaceutical and biological applications
	*Detectors

13	Student activities
14	Student activities
15	final exam

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Student scientific presentation.
- Course assignments
- Internet based search
- Problem solving

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, b1, b2
Oral exam to assess:	a1, a2, b1 and b2
Activity to assess:	d1, d2 and d3

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage			
Activity	10	10 %			
• Written exam	75	75 %			
• oral exam	15	15 %			
TOTAL	100	100%			

7- References and books:

A-Scientific papers

B- Essential books:

- Modern Analytical Chemistry, David Harvey, McGraw-Hill Companies, first edition, 2002.
- Principles of Instrumental Analysis, <u>Douglas A. Skoog</u>, <u>F. James</u> <u>Holler, Crouch</u> Thomson Brooks/Cole, 2007
- Handbook of instrumental techniques of analytical chemistry, Frank A. Settle, Prentice Hall PTR, 1997.

C- Suggested books:

- British Pharmacopoeia, HM Stationery Office, London, UK, PA, 2007,
- Martindale: The Complete Drug Reference, Pharmaceutical Press; 35 edition (2007) .

Websites and journals:

- <u>www.rsc.org</u>
- <u>www.sciencedirect.com</u>
- <u>www.pubmed.com</u>
- <u>www.medline.com</u>
- <u>EKB</u>
- Guidance for Industry: Q2B of Analytical Procedures; Methodololgy: International Conference of Harmonization (ICH). Nov. 1996 (http://www.fda.gov/eder/guidance /1320fnl.pdf).
- Journal of Chromatography A and B, Separation sciences, Analytical and Bioanalytical Chemistry, Bioanalysis, Analytical letters.

Zagazig university	Biochemistry department
Faculty of Pharmacy	Programs and Courses specifications

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

Course Coordinators: Prof Dr/ Hisham Ezzat

	Matrix I of Instrumental Analysis & chromatography II									
		ILOs								
Course Contents		Knowledge and understanding		Intellectual skills		General and Transferable skills		d e		
			a2	b1	b2	d 1	d ₂	d 3		
1	Instrumental Analysis: *Introduction *Principles	X								
2	[Ultraviolet (UV)and Visible spectrophotometry *Theory *Instrumentations	X	X	x						
3	[Infrared (IR) spectroscopy]. *Theory *Instrumentations	x	X	X						
4	Applications of UV and IR	X	X	X						
5	Nuclear magnetic resonance (NMR). *Theory **Instrumentations	X	X	X						
6	Mass-spectrometry (MS) *Theory *Pharmaceutical and biological applications.	X	X	x						
7	Applications of NMR and MS	X	X	х						
8	Electrochemistry Conductometry, Potentiometry. *Theory *Pharmaceutical and biological applications.	X	X	x						
9	Chromatography: *Introduction *Classification	X								
1 0	Quantitative and Qualitative Chromatographic techniques *Basis	X	X	x						

	*Pharmaceutical and biological						
	applications						
1 1	HPLC *Basis *Types Isocratic flow and gradient elution Particle size, Pore size, Pump pressure, detectors and applications	X					
1 2	Gas Chromatography *Basis *Pharmaceutical and biological applications * Detectors	x					
1 3	Student activities		X	X	X	x	х
1 4	Student activities		X	X	X	x	X

		Matrix II of	f Instrun	nental Analysis	& Chron	natograp	hy II			
ARS		Program	Course	Course contents	Source	Teaching and learning methods		Method of assessment		
		ILOS	ILOS			Lecture	Self learning	Written exam	Oral Exam	Activity
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A4	al	Instrumental Analysis UV-visible spectrophotometry, FluorometryIR NMR Conductometry, PotentiometryMS- chromatography HPLC, GC, applications	Textbooks, Scientific papers and self learning	x	X	X	X	

Biochemistry department

Faculty of Pharmacy

	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A8	a2	Applications of UV-visible spectrophotometry, electrochemistry and chromatography.	Textbooks, Scientific papers and self learning	х	Х	Х	X	
Intellectual skill <mark>s</mark>	2.2.6- Plan to improve performance in the field of specialization.	В6	b1-b2	Instrumental Analysis UV-visible spectrophotometry, FluorometryIR NMR Conductometry, PotentiometryMS- chromatography HPLC, GC, applications	Textbooks, Scientific papers and self learning	Х	Х	Х	x	
Transferable Skill <mark>s</mark>	2.4.2- Effectively use information technology in professional practices	D2	d1	Activity	Textbook, Scientific papers and self learning		Х			X

Biochemistry department

Faculty of Pharmacy

2. ar ca pr	2.4.6- Work in a team and lead teams earrying out various professional tasks.	D6 D7	d2 d3	Activity	Textbook Scientific papers and self learning	Х		x
Programs and Courses specifications

Biotechnology

Course Specification of Biotechnology

A- Course specifications:

- **Program on which the course is given:** Master of Pharmaceutical Sciences (Biochemistry)
- Major or minor element of programs: Major
- **Department offering the program:** Biochemistry
- **Department offering the course:** Microbiology and Immunology department in conjunction with Biochemistry department
- Date of specification approval: 2019

<u>1-Basic Information:</u>

Title: Biotechnology Credit hours: 4hrs/week

Code: ME4 Lectures: 4hrs/week

Total: 4hrs/week

<u>2- Overall aims of the course:</u>

On completion of the course, the student will be able to describe the components of biotechnology, the exploitation of gene cloning and recombinant DNA technology in production of useful microbial industrial strains and in monoclonal antibody technology, apply conventional genetic approaches and molecular genetics approaches in biotechnology, explain the bases of molecular genetics, and basic gene cloning strategies and tools and explore the basis of stem cell biotechnology and the regenerative medicine.

Programs and Courses specifications

<u>3-Intended learning outcomes (ILOS) of Biotechnology:</u>

A- F	Knowledge and Understanding
a1	Outline the principles of biotechnology techniques
a2	Explain how to manage and exploit knowledge of DNA cloning, recombinant DNA, and applied technology
a3	Summarize recent medical biotechnology applications.
a4	Identify the principles of stem cell biotechnology and regenerative medicine
B-I	ntellectual skills
b1	Express the principles biotechnology in medicine, agriculture and pollution control.
b2	Relate the principles of recombinant DNA technology in gene cloning and assessment of the microbial transformation
b3	Discuss the principles of PCR technology in the assessment of microbial mutation, gene detection, gene sequencing & forensic medicine
D- (General and transferable skills
d1	Develop computer skills as internet and power point in the activities.
d2	Gain information from various sources as text books, scientific journals,
	internet,etc.
d3	Work effectively as a team member

4-Course content of Biotechnology:

Week	Lecture content (2 hrs/week)	Lecture content (2 hrs/week)				
No.	(Microbiology Department)	(Biochemistry Department)				
1		Pharmacokinetics and				
		pharmacodynamics of peptides and				
	Introduction to biotechnology	protein drugs				
		a- Elimination of protein therapeutics				
		b- Distribution of protein therapeutics				
2	DNA Recombination:	Pharmacokinetics and				
	 Naturally occurring genetic 	pharmacodynamics of peptides and				
	recombination	protein Drugs				
	 Artificially occurring 	c- Protein binding of protein				
	genetic recombination (in	d- Chemical modification of protein				
	laboratory)	therapeutics				
3		Hematopoietic Growth Factor				
		a- Chemical description				
	Requirements for genetic	b- Pharmaceutical concerns				
	engmeening	c- Clinical and practice aspects				
		d- Toxicities				
4	Gene Cloning:	INTERLEUKINS				
	• General strategy for gene	a- Interleukins 1-17				
	cloning	b- Introduction and chemical				
	• Obtaining the target genes	Description – Pharmacology				
5	Gene Cloning:	INTERLEUKINS				
	• Finding suitable cloning	c- Interferon's alpha, Beta, Gamma				
	vectors	d- Pharmaceutical concerns				
	• Joining target gene(s) to	e- Clinical and Practice aspects				
	vector	-				
	• Insertion of hybrid					
	(recombinant) DNA into					
	expression host					
	(transformation) and					

Biochemistry department

Faculty of Pharmacy

	selection of transformant	
6		INSULIN
		a- Introduction
	Applications of genetic	b- Pharmacology and Formulations
	engineering	c- Pharmaceutical concerns, chemical
	Activity	and physical stabilities
		d- Clinical and practice aspects
		Activity
7	Polymerase chain reaction	Growth hormones
	(PCR)	a- hGH structure, Isolation
	Types of PCR	b- Pharmacology
	• Iraditional PCR	
	• rt PCR	
	• Real time PCR	
8	Applications of PCR:	Growth hormones
	1- gene amplification for:	c- Protein manufacture , formulations
	• gene cloning	d- Clinical use
	• gene sequencing	
	• gene control drug	
	production	
	2- diagnosis of microbial infections	
	3- in forensic medicine	
9	Monoclonal antibody (MAb)	Dispensing Biotechnology products
	technology (synthesis of Ab in	a- Introduction – Storage
	laboratory):	b- Handling
	hybridoma technology	c- Preparations
	• production & selection of Ab	
	• types of genetically	
	engineered MAb (mouse,	
	chemeric, humanized, human)	
	• nomenclature of MAb	

Programs and Courses specifications

	according to the target and	
	source	
	Global Marketing	
	pharmaceutically useful MAb	
10	Stem cells technology:	Dispensing Biotechnology products
	• Types of stem cells	d- Administration
	• Isolation	e- Outpatient/Homecare use
	• Culturing	f- Patient assessment
	• Applications of stem cells in	
	regenerative medicine	
11		Biotechnology for pharmaceutical
	Advances in vaccine	products
	preparation	a- Hormones
		b- Preparation of vaccines and other
		biological products
12		Biotechnology for pharmaceutical
		products
	Gene sequencing	c- Old, modern Biotechnology
		d- Applications in Medicine- industry
		– Agriculture – Ecology
13	Microarray technology	PCR, LCR, applications in forensic medicine- Mutations- RFLPetc
14	Presentation of students activities a	and open discussion
15	Final exam	

<u>5-Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion and presentations
- Critical thinking

<u>6-Student Assessment methods:</u>

- Written exams to assess: a1, a2, a3, a4, b1, b2, b3
- Oral exam to assess: a1, a2, a3, a4, b1, b2, b3
- Activity to assess: d1, d2, d3

Assessment schedule:

Assessment (1): Activity	Week 6,14
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

7-References & books:

A- Scientific papers

B- Essential books:

- Crommelin, D.A.; and Sindeler, R.D. (1997). Pharmaceutical Biotechnology. Hartwood Academic Publishers. The Netherlands.
- 2. Glick, B.P.; and Pasterternak, J.J. (1994). Molecular Biotechnology-Principles Applications of recombinant DNA. AS Press, Washington, D.C., USA.
- Thieman, W.J.; Palladino, M.A. (2008). *Introduction to Biotechnology*. Pearson/Benjamin Cummings. <u>ISBN 0-321-49145-9</u>.
- Higuchi, R., Dollinger, G., Walsh, P.S. & Griffith, R. (1992) Simultaneous amplification and detection of specific DNA sequences. *Biotechnology*, 10, 413–417. [The first description of real-time PCR].

5. VanGuilder, H.D., Vrana, K.E. & Freeman, W.M. (2008) Twenty-five years of quantitative PCR for gene expression analysis. *Biotechniques*, 44, 619–624.

C- Suggested books:

- 1. Biotechnology in health care: an introduction to biopharmaceuticals
- 2. Ermak G., (2013), Modern Science & Future Medicine (second edition)
- D- Websites: pubmed, Science direct, Nejm, Weilyinterscience

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Dr/ Ashraf Ahmed Kadry
 Prof. Dr/ Mohammed El-Sewedy
- تم اعتماد توصيف المقرر بمجلس القسم 2019 Date:

	Matrix I of Biotechnology											
		ILOs of Biotechnology course										
Course Contents		Knowledge and Understanding			Intellectual skills			General and transferable skills			lls	
		a1	a2	a3	a4	b1	b2	b3	d1	d2		d3
	Introduction to											
1	biotechnology	X										
2	Bioprocess	X										
	Downstream											
3	processing	X							-			
4	Cell culture -											
4	Activity	X				X	X	X				
5	technology	v										
5	Medical	Α										
6	biotechnology			x	x							
-	Medicine from											
7	cultured cells			X	X							
	DNA											
	Recombination &											
	Application of											
8	genetic engineering		X	X	X							
	Principle of PCR											
0	technology and											
9	Applications and	X	X				X	X				
10	advances in PCR			x	x		x	x				
10	Hybridoma											
	technology&											
	Monoclonal											
	antibody(MAb)-											
	technology &											
	Production											
	Nomenclature of											
11	MAbs Clabel Merketing				X							
	Biobal Marketing											
	useful monoclonal											
12	antibodies			X	X							
	Applications and											
13	advances in PCR			X	X		X	X				
	Vaccine											
	preparations											
	• Stem cells								Х	х	Х	Х
14	technology &											
	• Regenerative											
	medicine.											
	• Activity			v	v	v	v	v				
	(presentation)			Х	Х	Х	Х	Х		I		

	Matrix II of Biotechnology									
	ARS	Program ILOs	Course ILOs	Course contents	Sources	Teachi lear met	ing and ning hods Self learning	Methoo Written	l of ass oral exam	essment
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	a1- a2- a3-a4	Introduction to biotechnology- Bioprocess- Downstream processing- Cell culture- Hybridoma technology-Medical biotechnology- Medicine from cultured cells- DNA Recombination & Application of genetic engineering - Principle of PCR technology and gene amplification Applications and advances in PCR- Hybridoma technology& Monoclonal antibody(MAb)- technology & Production Nomenclature of Mabs- Global Marketing Pharmaceutically useful monoclonal antibodies - Applications and advances in PCR -Vaccine preparations- Stem cells technology & Regenerative medicine.	Textbooks, Scientific papers and self learning	x	X	X	X	

Biochemistry department

Faculty of Pharmacy

2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	В3	b1-b2-b3	Medical biotechnology- Medicine from cultured cells- DNA Recombination & Application of genetic engineering - Applications and advances in PCR- Hybridoma technology& Monoclonal antibody(MAb)- technology & Production Nomenclature of Mabs- Global Marketing Pharmaceutically useful monoclonal antibodies - Applications and advances in PCR -Vaccine preparations- Stem cells technology & Regenerative medicine.	Textbooks, Scientific papers and self learning	Х	Х	x	х	
2.4.2- Effectively use information technology in professional practices	D2	d1	Activity - presentation of reports and open discussion		х	Х			x
2.4.4- Use variable sources to get information and knowledge.	D4	d2	Activity - presentation of reports and open discussion	Textbooks, Scientific papers and self learning					
2.4.6- Work in a team and lead teams carrying out various professional tasks.	D6 D7	d3	Activity - presentation of reports and open discussion		х	Х		X	х

Biochemistry department

Programs and Courses specifications

Molecular biology

Course specification of Molecular Biology

Course Specification:

- Program on which the course is given: Master degree of pharmaceutical science (Biochemistry)
- Major or minor Element of program: Major
- Department offering the program : Biochemistry department
- Department offering the course: Biochemistry department in conjunction with Microbiology department
- Date of specification approval: 2019

<u>1-Basic information:</u>

Title: Molecular biology Lectures: 4 hrs/ week Total: 4 hrs/week Code: M110 Credit hrs: 4 hrs

On completion of the course, the students will be able to manifest a comprehensive knowledge on structure and function of DNA, RNA and protein, understand the mechanisms of DNA replication, transcription and protein synthesis, comprehend gene expression and regulation and understand the modern molecular biology techniques.

<u>3-Intended learning outcomes (ILOS) of Molecular</u> <u>biology:</u>

A-Knowledge and Understanding				
a1	List the types structure and function of nucleic acids and proteins			
a2	Identify basic processes and control mechanisms involved in			

Programs and Courses specifications

	replication and repair of DNA
a3	Identify expression of genes and regulation of genetic traits and connection of these processes with genetic diseases
a4	Explain the techniques employed in molecular biology studies
B-I	ntellectual skills
b1	Handle information and solve problems related to molecular biology, using oral, written, symbolic, graphical and numerical forms of presentation
b2	Make reasonable judgments by acquiring, combining, and evaluating quantitative and non quantitative information.
b3	Integrate knowledge, handle complexity, and formulate judgments with incomplete or limited information
b4	Interpret and explain data and findings of experiments in molecular biology
D-0	General and Transferable skills
d1	Conduct a web-based search on a topic related to molecular biology to produce reports and presentations
d2	Learn independently and to develop professionally, including the ability to pursue further research where appropriate
d3	Communicate effectively, with colleagues and a wider audience
d4	Work effectively as a part of team
d5	Develop different computer skills

4- Course Content of Molecular Biology

Week No.	Lecture content (4 hrs/week)
1	Introduction and Brief History of Molecular Biology: Transmission genetics, The Molecular Nature of Genes and genome. Introduction to gene function (storing information, replication, mutation)
2	Structure of biological macromolecules: Protein structure, general properties and functions (Primary Structure, Protein Folding, Secondary Structure, Alpha Helix, Beta Sheets, Tertiary Structure, Protein Domains, Quaternary Structure)
3	Structure of biological macromolecules: Nucleic Acids properties, structure and types of Nucleic acid. Physical and

	chemical of nucleic acids. Nucleic acid as a genetic material.
4	Replication and repair of DNA in prokaryotic organisms (Replication origins and regulation Recombination, rearrangement, chromosome structures),
5	Nucleic acid (genetic material) organization and replication in Eukaryotic cell. Chromatin Structure (histones, nucleosomes) and its Effects on Transcription and gene activity
6	Synthesis of RNA from DNA: Transcription in prokaryotic cells (RNA polymerases, Prokaryotic transcription) and in eukaryotic cells (RNA polymerases, Mechanisms and control of transcription in eukaryotes), and RNA processing in eukaryotes.
7	Synthesis of proteins (Translation of m RNA) in prokaryotic cells, and translation and processing in eukaryotic cells Activity
8	Regulation of gene expression in prokaryotes: Operons (Fine Control of Bacterial Transcription, the lac operon, the ara Major Shifts in operon, the trp operon, riboswitches, Bacterial Transcription: sigma factor switches, the RNA polymerase encoded in phage T7, infection of E coli by phage λ .
9	DNA-Protein Interactions in Bacteria: the λ family of repressor, the trp repressor, general consideration on protein DNA interaction, DNA binding proteins
10	Molecular Tools for Studying Genes and Gene Activity: molecular separation, labeled tracers, using nucleic acid hybridization, mapping and quantifying nucleic acid transcripts
11	Measuring transcription rate in vivo, assaying DNA protein interaction, finding RNA sequences that interact with other molecules, knockouts.
12	Transposition: bacterial transposons, eukaryotic transposons, rearrangement of immunoglobulin genes. Retrotransposons
13	Bioenergetics and other macromoleucles (lipids, fats, complex carbohydrates and their roles in cell)
14	Regulation and integration of metabolism in prokaryotics Genomics, Proteomics, and Bioinformatics

Biochemistry department

Faculty of Pharmacy

Programs and Courses specifications

	Activity (Students presentation and open discussion)
15	Written Exam

<u>5- Teaching and learning methods:</u>

- Lectures (overhead project, data show, board)
- Self learning: by assignments
- Open discussion and presentations
- Critical thinking

<u>6- Student assessment methods:</u>

- Written exam assess: a1, a2, a3, a4, b1, b2, b3, b4
- Oral exam assess: a1, a2, a3, a4, b1, b2, b3, b4
- Activity assess: d1, d2, d3, d4, d5

Assessment schedule:

Assessment (1): Activity	Week 7,14
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A- Scientific papers

B-ESSENTIAL BOOKS

1. Weaver, RF (ed). (2012)."Molecular Biology", 5th Ed, McGraw Hill Companies.USA

 Watson, J.D., Hopkins, N.H., Roberts, J.W.. Steitz, J.A- and Weiner, A.M. (1987). Molecular biology of the gene. 4th Edn. The Benjanun/cummgs Publishing Company Inc. NY.
 Brown, T.A. (1991). Essential Molecular Biology - A Practical approach. Vol-I, Vol - n, Oxford Univ. Press. Oxford.

C -SUGGESTED BOOKS

 Benjamin, L. (1990). Gene. IV Edn. Oxford Univ. Press, Oxford.
 David, J., Ulley and Eckstein, F. (1992). Nucleic Acids and Molecular Biology. Vol-6, Springer-verlag Berlin Heidelberg.
 Desmond, S.T., and Nicholl. (1994). An Introduction to genetic Engineering Cambridge Univ. Press. Cambridge.

4. Freifelder, D. (1990). Microbial genetics. Narosa Pub. Home. India.5. Gardner, E.J. (1991). Principles of Genetcis. John Wiley and Sons Inc..

.Biology Cell .Thomas D.and ; William C. Earnshaw (2004) ,6. Pollard Philadelphia: Saunders.

7. Lodish, Harvey, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David Baltimore, James Darnell Molecular Cell Biology, 4th ed (2000), New York

8. Watson, JB., Gflnian, M., Witkowshi, J. and Zoller, M. (1992). Recombinant DNA. 2^{Dd} Edn.

D- Websites: pubmed, Sciencedirect, Nejm, Weilyinterscience, EKB

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

• Course Coordinators:

Prof. Dr. Fathy Mohammed El-Sayed Serry

Prof Dr/ Mohamed Mahmoud El-Seweidy

تم الاعتماد من مجلس القسم بتاريخ 2019

Faculty of Pharmacy

	Matrix I of Molecular Biology (2019)													
	ILOs of Molecular Biology course													
		Knowledge and				General and transfera						able		
	Course Contents		Under	standi	ng	Iı	ntellec	tual sl	cills			skill	s	
		a	a	a	a	b	b	b	b	d	d	d	d	d
		1	2	3	4	1	2	3	4	1	2	3	4	5
	• DNA ,RNA													
	structure, function													
1	Difference between	Х	Х											
	DNA & RNA													
2	DNA replication	v												
2	steps	Л												
3	• Types of RNA		x											
3	Genetic code		Δ											
	Protein synthesis													
4	Alteration of		Х											
	nucleotide sequence													
	• Genetic													
	engineering									X				
	• DNA cloning													
5	 Applications of 			х	х	X	X				x	x	X	X
	cloning in treatment													
	of diseases													
	-activity													
	• Genomic DNA							X 7	X 7					
6	libraries, c DNA			Х				Х	Х					
	• PCR, LCR and													
	their applications													
	• KFLP													
	• Lilikage of													
7	gene mutation			x	x	x	Х							
,	Prenatal diagnosis					1								
	Diagnosis of sickle													
	cell disease													
	cell disease													

Biochemistry department

Faculty of Pharmacy

	 Sequencing of 											
8	DNA (chemical	Х										
	method)											
	 Sequencing of 											
9	DNA (enzymatic	Х										
	method)											
1	• Flectrophoresis	x										
0	Lieeuophoresis											
1	• Sothern, western	v										
1	and northern blotting											
1	 Sequencing of 		v									
2	proteins		Λ									
1	• Synthesis of genes	v										
3	synthesis of genes											
	Monoclonal							X	X	X	X	X
1	antibodies			v	v	v	v					
4	activity			Λ	Λ	X	Λ					
	(presentation)											

	Matrix II of Molecular Biology									
						Teaching and learning methods		Method of assessment		
	NARS	Program ILOs	Course ILOs	Course contents	Sources	Lecture	Self learning	Written exam	oral exam	Activity
Knowledge and Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A1	a1- a2- a3- a4	• DNA structure, function. DNA replication steps - Genomic DNA libraries, c DNA -Sequencing of DNA (chemical method)- Sequencing of DNA (enzymatic method)- Electrophoresis- Sothern, western and northern blotting- Synthesis of genes- RNA structure, function Difference between DNA and RNA- Types of RNA- Genetic code- Protein synthesis-Alteration of nucleotide sequence - Sequencing of proteins- Genetic engineering- DNA cloning- PCR, LCR and their applications- RFLP- Linkage of polymorphism with gene mutation- Applications of cloning in treatment of diseases-Prenatal diagnosis, Diagnosis of sickle cell disease- Monoclonal antibodies	Textbooks, Scientific papers and self learning	X	X	Х	Х	

Biochemistry department

Faculty of Pharmacy

Intellectual skills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	В3	b1-b2-b3-b4	Genetic engineering- DNA cloning- PCR, LCR and their applications- RFLP- Linkage of polymorphism with gene mutation- Applications of cloning in treatment of diseases- Prenatal diagnosis, Diagnosis of sickle cell disease- Monoclonal antibodies	Textbooks, Scientific papers and self learning	Х	Х	Х	X	
al and ble skills	2.4.2- Effectively use information technology in professional practices	D2	d1-d5	Activity (reports)- open discussion	Textbooks, Scientific papers and self learning	X	X			Х
Gener transfera	2.4.4- Use variable sources to get information and knowledge.	D4	d2	Activity (reports)- open discussion	Textbooks, Scientific papers and self learning	X	X			х
	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6	d3	Activity (reports)- open discussion		х	х			x
	2.4.8- Continuous and self learning	D.8-	d4	Activity (reports)- open discussion		х	х		х	Х

Biochemistry department

Faculty of Pharmacy

Programs and Courses specifications

Thesis Specification

Thesis of Master Degree

A- Thesis specifications:

- **Program on which the course is given:** Master of Pharmaceutical sciences (Biochemistry)
- Major or Minor element of program: Major
- **Department offering the program:** Biochemistry
- Department offering the thesis: Biochemistry
- Date of specification approval: 2019

<u>1- Basic information</u>:

Title: Master Thesis in Biochemistry Credit hours: 30 hrs

<u>2- Overall aim of the thesis:</u>

After being accepted by the Faculty authority, the candidate has to recall the research plan of the University and the Faculty to select the research area which he/she is going to fit with

On completion of the thesis, the students will be able to:

- Design a robust study to answer the research question
- Identify and perform different techniques and methods used in the experimental work according to the designed protocol
- Collect all the data needed to answer the research question using the developed study design
- Analyze the results of the study in the light of prior knowledge
- Draw conclusions driven from the research findings.

<u>3- Intended learning outcome's (ILOs):</u>

Knov	vledge and Understanding
o1	Outline theoretical and principles of Biochemistry related to
a1	main objectives of the thesis
	Determine the problem the thesis will handle in correlation with
a2	the community and surrounding environment
a3	Explain clearly the principles of Biochemistry
a4	Understand any legal aspects related to the thesis work.
	Demonstrate GLP and quality assurance related to practical work
as	of the thesis
a6	Identify and apply scientific experimental ethics.
Intell	ectual skills
h1	Solve problems related to practical work by obtained quantitative
DI	data from the practical work
h2	Discuss professional problems and suggest solutions relay on
	standard guidelines
b3	Combine required specialties to manage the subject under study
h4	Integrate scientific results and write report following conducting
01	research
b5	Manage risks and hazards related to professional practical area
b6	Design a laboratory protocol for the work
b7	Decide what to do with full responsibility in scientific research
Profe	ssional and practical skills
c1	Apply different techniques related to practical thesis work.
c2	Use and evaluate practical data to write report
c3	Apply various data collection tools involved in the protocol

Programs and Courses specifications

Gene	General and Transferable skills					
d1	Communicate effectively with all people related to the work					
d2	Use information technology in review and thesis preparation					
d3	Evaluate the work and learning needs					
d4	Use various sources to get information about the subject understudy					
d5	Set rules for evaluation and judging others performance.					
d6	Work effectively as a member of a team					
d7	Acquire time management skills					
d8	Study independently and plan research studies.					

4. Thesis Content:

Steps	Content
1 st	Suggest the possible points/ problems of research that the
	candidate can work on in the frame of the aim of work and
	choose proper point related to the problems of the community
	and surrounding environment.
	Collect all available information about this subject by all
	possible means.
	Use internet, journals, books and others thesis to get previous
	and recent information about the subject understudy.
	Design the protocol including the steps of work following the
	suitable timetable.
	Integrate different knowledge (pharmacotherapy guidelines,
	medication safety, biostatistics,) to solve suggested
	problem.
	Continuous evaluation to the thesis outcome according to the

Biochemistry department

Faculty of Pharmacy

	schedule.					
	Identify different practical techniques and methods to collect					
2^{nd}	data related to the subject under study.					
	Operate scientific instruments according to instructions.					
	Evaluate and manage hazards (chemical and biological)					
	throughout the whole practical work.					
	Organize the experimental work according to the designed					
	protocol (either individual, parallel or sequential experiments).					
	Apply treatment protocols according to guidelines					
	Perform lab analysis, x-ray, gene analysis when required					
	Apply ethical recommendations during dealing with humans/					
	experimental animals.					
	Understand any legal aspects related to the thesis work.					
	Collect raw data including patients demographic data, tested					
3 rd	parameters, others					
	Interpret raw data to get valuable information.					
	Perform statistical analysis for the results.					
	Present and describe the results graphically.					
	Suggest solution to the problem understudy based on this					
	presented data.					
4 th	- Communicate with supervisors to discuss results					
	Work effectively as a member of a team (e.g. Supervisors,					
	various professionals and Technicians, patients).					
	Present the results periodically in seminars.					
	Write scientific reports on the obtained results with conclusive					
	significance.					
	Discuss obtained results in comparison with pervious literatures.					
	Suggest possible recommendations based on the outcome of the					

thesis and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and

writing scientific papers.

<u>5- Teaching and Learning Methods:</u>

- Self learning (Activities, Research....)
- Lab work
- Seminar
- reporting
- Critical thinking
- Solving problem
- Open discussion

<u>6- References:</u>

Lau AH. Glomerulonephritis. In: DiPiro JT, Talbert RL, Yee GC, et al., eds. Pharmacotherapy: A Pathophysiologic Approach, 9th ed. New York: McGraw-Hill, 2014:705-28.

Facilities required for:

- 1. Zagazig University Hospital
- 2. For practical work: U.V spectrophotometer, centrifuge, PCR,

ELISA, Electrophoresis

تم إعتماده بمجلس القسم بتاريخ 2019

	Master of Biochemistry																																
Program Courses		Program intended learning outcomes																															
			Knowledge and understanding										Intellectual skills							Professional & Practical						General and transferable							
																				skills						skills							
		A1	A2	A3	A4	A5	A6	Α7	A8	A9	B1	B2	B3	Β4	B5	B6	B7	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6	D7	D8		
General courses	Molecular biology	\checkmark																									\checkmark						
	Physiology																1	\downarrow						\checkmark									
	Biostatistics									\checkmark														\checkmark	\checkmark								
	Instrumental								\checkmark																								
	analysis &																																
	chromatography II																																
	Drug interaction																																
	Drug induced		V																														
	disease																																
	Biotechnology																																
Special	Advanced																																
courses	biochemistry																																
	Integration of																																
	metabolism																																
	Metabolism of																																
	individual tissues																																
	Thesis	\checkmark	\checkmark				\checkmark	\checkmark		\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			