

Zagazig University Faculty of Pharmacy Analytical Chemistry Department

Program and Course Specifications Master and Ph.D. Degrees

2019

Master Degree

Program Specification

Program Specification

A-Basic Information

- 1- Program title: M. Pharm. Sci Degree in Analytical Chemistry
- 2- Program type: Single.
- 3- Faculty/ University: Faculty of Pharmacy, Zagazig University
- **4- Department:** Analytical Chemistry
- 5- Coordinator: Prof. Dr. Wafaa ElSayed
- 6- Date of program specification approval: 2019
- 7-External Evaluator: Prof. Gamal Saleh (Analytical Chemistry department –

Faculty of Pharmacy – Assuit University)

- 8- **Internal Evaluator:** Prof. Hisham Ezzat
- 9- Academic Reference Standards:
 - a. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).
 - b. The program ILOs were compared to the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK.

B- Professional Information

1- Program aims:

Analytical Chemistry master's program is a program aimed at enhancement of knowledge and skills of the graduates in analytical chemistry in different settings including Industry, Research and academia.

The broad objectives of the Program are:

1. To develop research skills as well as communication skills, problem solving and decision making

- 2. To provide appropriate theoretical knowledge and practical skills in analyzing materials even in trace amounts using modern analytical methods and instruments.
- 3. To enable students acquire the skill of interpretation of analytical data using statistical principles.
- 4. To advance the experience of students in the area of good chemical laboratory techniques for profound contribution in the pharmaceutical analytical chemistry as well as pharmaceutical industry.
- 5. To enable the students to conduct professionally and independently analysis of pharmaceutical compounds by different qualitative and quantitative methods in various pharmaceutical settings including academic, research and industrial institutes.

The Analytical Chemistry master's program graduates are able to work in different profession fields such as Research & Development Laboratories, Educational and Research institutes, Analytical and Bio-analytical laboratories, Medical Centers, Hospitals, Universities, National Quality Control & assurance Centers, Pharmaceutical Industry and Ministry of Health.

Graduate Attributes:

Master's program graduates should acquire the required attributes & skills in various Pharmaceutical Analytical and bioanalytical Chemistry features including the following:

- 1. Have the basic knowledge for practice of analytical and bio-analytical chemistry.
- 2. Apply the fundamental and advanced professional skills for appropriate applications in the field of pharmaceutical industry and pharmaceutical products development.
- 3. Analyze data, evaluate information and solve practiced problems.

- 4. Conduct research, starting from constructing experimental plans till writing and publishing scientific reports.
- 5. Appreciate scientific integrity and ethical principles for professional practice in the area of expertise.
- 6. Demonstrate continuous and self learning abilities.
- 7. Cooperate and work effectively with other team members.

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and develop skills appropriate for **Analytical chemistry** Master of sciences degree.

2-1- Knowledge and Understanding:

On successful completion of the Master degree Program, students will be able to:

- A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.
- A.2- Recognize good practice principles and environmental samples analysis.
- A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment.
- A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications.
- A.5- Outline principles of drug design and development.
- A.6- Figure out drug stability features and kinetics chemistry.
- A.7- Comprehend the ethical issues related to drug analysis and research.
- A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.
- A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques.

2-2 - Intellectual Skills:

On successful completion of the Master degree Program, students will be able to:

- B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.
- B.2- Suggest the most appropriate analytical technique for analyzing the pharmaceutical or biological samples.
- B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.
- B.4- Write concrete reports on the obtained results with conclusive significances.
- B.5-Identify possible hazards during work and how to deal with.
- B.6- Evaluate the applied laboratory safety measures as well as proper use of analytical instruments.
- B.7- Design a laboratory protocol for a requested analytical issue.
- B.8-Assess problems encountered during analytical assay and make professional decisions.

2-3 - Professional and Practical Skills:

It is intended that, on successful completion of the Master degree Program, students will be able to:

- C.1- Apply the recent laboratory techniques and advanced analytical procedures as well as good laboratory practice.
- C.2- Write reliable scientific reports in the form of published articles.
- C.3- Validate novel methods of analysis.
- C.4- Develop modern analytical techniques other than the traditional ones.

2-4 - General and Transferable Skills:

On successful completion of the Master degree Program, students will be able to:

- D.1- Interact effectively with others in a written and oral ways.
- D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.
- D.3- Practice self-assessment and continue professional development.
- D.4- Retrieve information from various sources.
- D.5- Evaluate the performance of others in the team.
- D.6- Work effectively as a team member.
- D.7- Acquire team leader skills for the future work.
- D.8- Handle working hours appropriately.
- D.9- Develop problem solving, decision making as well as research skills.

3- Academic Standards:

- a. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).
 - b. The program ILOs were compared to the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK.

MatrixI: Comparison of MSc. Pharm. Sci Degree in Analytical Chemistry program with the Academic Reference Standard {ARS, 2009} developed by NAQAAE

Attributes of the graduates (ARS, 2009)	Attributes of the graduates (MSc. Pharm. Sci Degree in Analytical Chemistry)
1. Apply the specialized knowledge he has acquired in his professional practice	 Have the basic knowledge for practice of analytical and bio-analytical chemistry. Apply the fundamental and advanced professional skills for appropriate applications in the field of pharmaceutical industry and pharmaceutical products development
2. Identify and solve professional problems5. Take decisions using available information	3. Analyze data, evaluate information and solve practiced problems.
3. Show good communication and leadership skills7. Aware of his role in community service and development	7. Cooperate and work effectively with other team members.
4. Use technology effectively in his professional practice6. Use available resources efficiently	4. Conduct research, starting from constructing experimental plans till writing and publishing scientific reports.
8. Reflect commitment to integrity, credibility and accountability	5. Appreciate scientific integrity and ethical principles for professional practice in the area of expertise.
9. Be a lifelong learner and able to develop himself	6. Demonstrate continuous and self learning abilities.

Matrix 2: Comparison between MSc. Pharm. Sci Degree in Analytical Chemistry program ILOs and the Academic Reference Standards (ARS 2009) developed by NAQAA

	developed by NAQAA		
	(ARS, 2009)	Program ILOs	
	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics. A.5- Outline principles of drug design and development. A.6- Figure out drug stability features and kinetics chemistry.	
Jnderstanding	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Recognize good practice principles and environmental samples analysis. A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment.	
Knowledge and Understanding	2.1.3- Scientific developments in the area of specialization.	A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications.	
Kn	2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques.	
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.	
	2.1.6- The fundamentals and ethics of scientific	A.7- Comprehend the ethical issues related to drug analysis	

	research.	and research.
	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems 2.2.2- Solve specified problems in the lack or missing of some information.	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form. B.2- Suggest the most appropriate analytical technique for analyzing the pharmaceutical or biological samples.
ills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.
Intellectual Skills	2.2.4- Conduct research and write scientific report on research specified topics.	B.4- Write concrete reports on the obtained results with conclusive significances.
Int	2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.5-Identify possible hazards during work and how to deal with. B.6- Evaluate the applied laboratory safety measures as well as proper use of analytical instruments.
	2.2.6- Plan to improve performance in the field of specialization. 2.2.7- Professional	B.7- Design a laboratory protocol for a requested analytical issue. B.8-Assess problems
	decision-making in the contexts of diverse disciplines.	encountered during analytical assay and make professional decisions.
Professional and Practical Skills	2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Apply the recent laboratory techniques and advanced analytical procedures as well as good laboratory practice.
Profess Practic	2.3.2- Write and evaluate professional reports.	C.2- Write reliable scientific reports in the form of published articles.

	2.3.3- Assess methods and tools existing in the area of specialization.	C.3- Validate novel methods of analysis.C4. Develop modern analytical techniques other than the traditional ones.
	2.4.1- Communicate effectively.2.4.2- Effectively use information technology in	D.1- Interact effectively with others in a written and oral ways. D.2- Demonstrate computer skills such as internet, word
ole Skills	professional practices 2.4.3- Self-assessment and define his personal learning needs. 2.4.8- Continuous and self	processing, chemometric and kinetic softwares. D.3- Practice self-assessment and continue professional development.
General and Transferable Skills	learning. 2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources.
ral and 1	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Evaluate the performance of others in the team.
Gener	2.4.6- Work in a team and lead teams carrying out various professional tasks.	1
	2.4.7- Manage time effectively.	D.8- Handle working hours appropriately.

Matrix3: Comparison between MSc. Pharm. Sci Degree in Analytical Chemistry program ILOs and the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK

		versity of London, UK	
	Birkbeck College, University of London,UK	Program ILOs	
Knowledge and Understanding	1) Demonstrate a sound knowledge and understanding of the science underlying the key areas of analytical methodology and its practical applications.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics. A.2- Recognize good practice principles and environmental samples analysis. A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment. A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications. A.5- Outline principles of drug design and development A.6- Figure out drug stability features and kinetics chemistry.	
Knowled	2) Show a critical understanding of recent advances in their field of study	A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications.	
	3) Critically assess current literature in the discipline	D.4- Retrieve information from various sources.	
	4) Formulate a research or method development plan and carry out the appropriate literature and data searches.	C.3- Validate novel methods of analysis.C4. Develop modern analytical techniques other than the traditional ones.	
	5) Demonstrate a critical and professional approach to quality of analysis.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and	

		quality assurance in pharmaceutical and industrial analysis.	
	6) Select the most appropriate analytical method.	B.2- Suggest the most appropriate analytical technique for analyzing the pharmaceutical or biological samples.	
	7) Analyse a wide range of data types.	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	
Intellectual Skills	8) Show critical reasoning. 12) Show independent reasoning and defense of ideas	B.4- Write concrete reports on the obtained results with conclusive significances.	
9) Gather and eval information. 10) Solve problems.	/	B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.	
	10) Solve problems.	B.5-Identify possible hazards during work and how to deal with. B.8-Assess problems encountered during analytical assay and make professional decisions.	
	11) Formulate and test basic hypotheses.	B.7- Design a laboratory protocol for a requested analytical issue.	
cal Skills		C.1- Apply the recent laboratory techniques and advanced analytical procedures as well as good laboratory practice	
Professional and Practical Skills	14) Work safely and efficiently in a laboratory carrying out risk assessments where appropriate.	A.7- Comprehend the ethical issues related to drug analysis and conduct research. A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques. B.6- Evaluate the applied laboratory safety measures as well as proper use of analytical instruments.	

Programs and Courses specifications

	15) Access a variety of subject-specific and more generic databases and information sources.	D.4- Retrieve information from various sources.
	16) Use molecular visualisation tools.	Not covered
	17) Apply skills to practical problems and, where appropriate develop new skills.	C.3- Develop and assess novel methods of analysis.
	18) Use different forms of IT confidently	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.
lls	19) Work as part of a team both in person and via virtual interaction.	D.5- Evaluate the performance of others in the team D.6- Work effectively as a team member. D.7- Acquire team leader skills for the future work.
and social Skills	20) Manage time efficiently to balance the face-to-face and distance learning aspects of the programme	D.8- Handle working hours appropriately.
Personal and	21) Present and communicate material and ideas in both written (including electronic communication) and oral formats.	D.1- Interact effectively with others in a written and oral ways.
	22) Learn independently.	D.3- Practice self-assessment and continue professional development.
	23) Show a professionalism in analytical science	D.9- Develop problem solving, decision making as well as research skills

4-Curriculum Structure and Contents:

Program duration: 3-5 years

Program structure:

- The Masters program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

1- Courses: General (1 year) and Special

No. of credit hours for program courses:

Compulsory: 12

Elective: (2x4) 8

Special: (3x4) 12

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic related to instrumental analysis. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

3- General University Requirements: 10 credit hours including:

- a- TOEFL (400 units)
- b- Computer course

c-Program Curriculum:

5-Program admission requirements:

Course Code	Course Title	Credit hours	Program ILOs Covered
	General Courses:		
M109	Drug design	4	A5, D2
M101	Advanced Instrumental Analysis & chromatography I	4	A1, A4, B1,D2
M106	Physical chemistry	4	A1, A6, B1, B3, D2, D6, D9
ME3	Elective A Good practice for analysis of drugs and quality control	4	A2,A8,B1, B5, D2, D4
ME2	Elective B Drug Stability	4	A6, B7, D2,D4
	Special Courses:		
Asp1	Potentiometry, voltammetry and electrochemical sensors	4	A1, A3, B7, B8, D2, D5, D6, D7.
Asp2	Kinetic methods of analysis	4	A1, A6,A8, A9, B1, B2, D4, D8, D9.
Asp3	Spectrophotometry	4	A1, A3, B7, D4, D5, D7.
	Thesis	30	A1, A3, A4, A7, A8, A9, B1, B2, B3, B4, B5, B6, B7, B8, C1,

	C2, C3, C4, D1, D2,
	D3, D4, D5, D6, D7
	,D8, D9.

General Admission Conditions

- The Applicant should finish or being permanently or temporarily exempted from the military service and temporary exemption should be valid for at least one year from the date of beginning of study. (Exceptions apply for demonstrators and assistant lecturers).
- The applicant admission to the M.Sc. program should be no later than ten years from the time of graduation.
- Acquisition of an approval from the Faculty Council following an approval
 of concerned Departmental Board as well as Graduate Studies and Research
 Committee recommendation within a maximum of one month for any
 conditions stated by the concerned Departmental Board.

Admission Conditions for M.Sc. degree

In addition to the general admission conditions stated before, applicants are admitted to M.Sc. degree upon fulfillment of the following:

The applicants should be holders of Bachelor in Pharmaceutical Sciences from any Faculty of Pharmacy with a general grade at least good affiliated to the Egyptian Universities or an equivalent degree granted by any institute recognized by the Supreme Council of Universities.

The Faculty council is allowed, on consent of the concerned Departmental Board as well as Graduate Studies and Research Committee, to accept student for registration of M.Sc. degree if he has got a diploma from one of the Egyptian Universities in one of the pharmaceutical sciences fields, Faculties, or Institutes

that are recognized by the Supreme Council of Universities with a general grade of Good regardless his grades in bachelor degree.

Students should fulfill all the admission requirements stated by the concerned Departmental Board (ICDL certificate, local TOEFL certificate with a grade at least 450).

Admission has to be done within the period announced by the university.

Candidate thesis discussion isn't before one calendar year from research point registration.

Regulations to complete the program:

Conditions of granting the degree

The Faculty Council, in compliance with the concerned Departmental Board as well as Graduate Studies and Research Committee recommendation awards the M.Sc. degree upon fulfillment of the following requirements:

- Carrying out a deep research in the area of specialization for at least one or two calendar years and at most three years from the time of registration.
- The student has to succeed in all courses examinations.
- Acceptance of the research thesis by the Jury Committee according to statement 104 of universities regulating law.

Cancellation of Registration

The Faculty Board is allowed to cancel registration for M. Sc. programs in the following circumstances

• Student's failure to pass the course examinations for two times.

- Student's nonattendance or unsatisfactory progress (at least two annual reports) in research work being reported by the advisors and chief supervisor to the Departmental Board and forwarded to the Graduate Studies and Research Committee recommendation for approval of cancellation.
- Dissertation refusal by the Jury Committee.
- Incapability of the student to graduate by the deadlines indicated.

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS
	Knowledge and Understanding and Intellectual Skills
Written exam	
Oral exam	Knowledge and Understanding ,Intellectual Skills and
	General and Transferable Skills
Activity	Intellectual Skills and General and Transferable Skills
	Knowledge and Understanding ,Intellectual Skills &
Seminars	General and Transferable Skills
	Professional and practical Skills & General and
Follow up	Transferable Skills
	Knowledge and Understanding, Intellectual Skills,
Thesis and	Professional and practical Skills & General and

oral	Transferable Skills
presentation	

Grade Scale	Grade point average value (GPA)	Numerical scale
A+	5	≥ 95%
A	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%
С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%

8-Failure in Courses:

Students who fail to get 60% (1 point)

9-Methods of program evaluation

Evaluator	Method	Sample
	Program evaluation	Program report
Internal evaluator:	Courses evaluation	Courses report
Professor Dr.		
Hesham Ezzat		
	Program evaluation	Program report
External evaluator:	Courses evaluation	Courses report
Professor Dr. Gamal		
Saleh		
Others methods	Matrix with NARS	The Matrix

Programs and Courses specifications

Questionnaires	Results of the
	questionnaires

Program coordinator

Head of Department

Prof. Dr. Wafaa El-Sayed

تم اعتماد توصيف البرنامج في مجلس القسم بتاريخ

Courses specifications

												MSc.	of An	alytic	al che	emisti	ry -														
												Progra	am inte	ended	learn	ing ou															
	Program Courses	Knowledge and understanding				Intellectual skills					Professional and practical skills			General and transferable skills					•												
		A1	A2	АЗ	A4	A5	A6	A7	A8	A9	B1	B2	В3	B4	B5	В6	В7	В8	C1	C2	СЗ	C4	D1	D2	D3	D4	D5	D6	D7	D8	D9
	Drug design					х																		х							
courses	Advanced Inst.Anal.& Chromatography	х			х						х													х							
	Physical chemistry	Х					x				x		х											х				х			х
General	Good practice and quality control		х						х		х				х									х		х					
	Drug stability						х										х							x		x					
ourses	electrochemical	х		х													х	х						х			х	x	х		
pecial o	Kinetic methods of analysis	х					х		х	х	х	х														х				х	х
S	Spectrophotometry	х		х													х									х	х		х		
Thesis		х		х	х			х	х	Х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х	x	х	х	х	х	х	х

Physical Chemistry

Course specification of Physical Chemistry

A-Course specifications:

 Program on which the course is given: Master's of Pharmaceutical Sciences in analytical chemistry

• Major or Minor element of program: Major

• Department offering the program: Analytical Chemistry.

• Department offering the course: Analytical Chemistry.

• Date of specification approval: 2019

1- Basic information:

Title: **Physical Chemistry** Code: M106

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students should be able to outline the principles of kinetics, catalysis, solutions and photochemistry and describe theories of reaction rate, types of chemical reaction criteria of catalysis.

3. Intended learning outcome s (ILOs) of Physical Chemistry:

A- K	nowledge and Understanding
a1	Describe the principles of kinetics, catalysis, solutions and
aı	photochemistry
a2	Outline the behavior and laws governing, photochemistry,
az	solutions and chemical reactions and their applications.
a3	Describe units of measurements and calculations with chemical
as	formulas and equations.
B- In	tellectual skills
$\mathbf{b_1}$	Implement the knowledge and information obtained from physical
D1	chemistry principles in determining rates of the reaction.
D- G	eneral and Transferable skills
\mathbf{d}_1	Acquire Computer skills like preparing presentations and
u ₁	collecting information through different data-bases.
\mathbf{d}_2	Work effectively as a member of team
d ₃	Improve scientific brain storming capabilities of team members

4. Course Contents of Physical Chemistry:

Week number	Contents
1	Introduction of kinetics and rate of reactions
2	Molecular and order of reaction.
3	Parallel and consecutive reactions.
4	Methods used for determination of the order of reactions
5	Theories of reaction rates and chain reaction

Faculty of Pharmacy

6	Criteria of catalysis.
7	Homogenous and enzyme catalysis
8	Heterogeneous catalysis
9	Nature of electrolytes in solution.
10	Photochemistry and properties of electromagnetic radiations.
11	Laws of photochemical process, quantum yield and chain reaction.
12	Solutions:Principles and concentration and solubility.
13	 Factors affecting solubility Solute-solvent interaction. Solubility and temperature. Effect of pressure on solubility.
14	 Solutions of liquids in liquids Solutions of solid in liquids (Colligative properties of solutions.)
15	Written Exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Internet based search

Faculty of Pharmacy

6- Student Assessment methods :

Written exams to assess: a1, a2, a3 and b1

Oral exam to assess: a1, a2, b1 and b2

Activity to assess: d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

- Principles of Physical Chemistry (Part 1-2) by Lion el M. Raff, Prentice Hall; 1st edition (2001).
- Physical chemistry of surfaces, Arthur Ademson, John Wiley & Sons.inc:1st edition (2000).

D- Websites/Journal:

Analytical Chemistry

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer, data show.

- Course Coordinator: Prof Dr/ Wafaa Hassan
 Prof Dr/ Mervat Hosny
- Head of Department:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

	Matrix I o	f Phys	sical C	hemi	istry			
					ILOs			
	Course Contents		wledge a lerstandir		Intellectual skills General an Transferab skills			
		a1	a2	a3	b1	d ₁	d ₂	d 3
	• Introduction of							
1	kinetics and rate	X						
	of reactions							
	Molecular and							
2	order of reaction.			X				
	Parallel and							
3	consecutive			X	X			
	reactions.							
	Methods used for							
	determination of							
4	the order of	X						
	reactions							
	• Theories of							
5	reaction rates and		X					
	chain reaction							
	Criteria of							
6	catalysis.		X					
	Homogenous and							
7	enzyme catalysis	X						

Faculty of Pharmacy

8	• Heterogeneous	X			X	X	X
	catalysisNature of						
0	electrolytes in	₹7					
9	solution.	X					
	Photochemistry						
	and properties of						
10	electromagnetic		X				
	radiations.						
	• Laws of						
	photochemical						
11	process, quantum		X				
	yield and chain						
	reaction.						
	• Solutions:						
12	 Principles and 	x	x				
12	concentration and						
	solubility.						
	 Factors affecting 						
	solubility						
	• Solute-solvent						
13	interaction.		v				
13	 Solubility and 		X				
	temperature.						
	• Effect of pressure						
	on solubility.						

Programs and Courses specifications

		Solutions of				
		liquids in liquids				
		Solutions of solid				
	14	in liquids	X			
		(Colligative				
		properties of				
		solutions.)				
١					1	1

Matrix II of Physical Chemistry

NARS		NARS	RS Program ILOs		Course contents	Sources	lear	ing and ning hods	Method of assessment		
				ILO s			Lecture	Self learning	Written exam	Oral Exam	Activity
	2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics. A.6- Figure out drug stability features and kinetics chemistry.	a1	 Introduction of kinetics and rate of reactions. Methods used for determination of the order of reactions Homogenous and enzyme catalysis Heterogeneous catalysis Nature of electrolytes in solution. 	Textbooks, Scientific papers and self learning	x	X	X	x	

Programs and Courses specifications

	 Theories of reaction rates and chain reaction Criteria of catalysis. Photochemistry and properties of electromagnetic radiations. Laws of photochemical process, quantum yield and
a2 a3	 Principles and concentration and solubility. Factors affecting solubility Solute-solvent interaction. Solubility and temperature.
	 Effect of pressure on solubility. Solutions of liquids in liquids Solutions of solid in liquids (Colligative properties of solutions.)

Faculty of Pharmacy

2.2	2.2.3- Correlate and integrate different pharmaceutic al knowledge to solve professional problems.	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form. B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.	b1	Units of measurements and dimensional analysisCalculations with chemical formulas and equations.	Textbooks, Scientific papers and self learning	X	X	X	x	
2.4	2.4.2- Effectively use information technology in professional	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity						X

Programs and Courses specifications

	practices						
	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member.	d2	Activity			х
		D.9- Develop problem solving, decision making as well as research skills	d3				

Courses offered by other departments

Drug Design

Course specification of Drug Design

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Medicinal chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2019

1- Basic information:

Title: **Drug Design** Code: M109

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to outline principles of drug design, docking and utilize combinatorial chemistry in synthesis of drugs.

3. Intended learning outcome s (ILOs) of Drug Design

Know	Knowledge and Understanding				
a1	Outline principles of drug design and combinatorial chemistry.				
a2	Describe applications of drug design and QSAR.				
a3	Illustrate clearly the up-to date information & methods in drug design and docking.				
Intell	Intellectual skills				
b1	Solve or propose solutions to specified problems in drug design				
Gene	General and Transferable skills				
d1	Write reports and present it.				

4. Course Content of Drug Design

Week number	Lecture contents (4hrs/week)			
1	Principles of drug design			
2	Combinatorial chemistry (combinatorial and			
	parallel synthesis in medicinal chemistry			
	projects)			
3	Combinatorial chemistry (solid phase			
	techniques)			
4	QSAR (hydrophobicity, electronic effects)			
5	QSAR(steric factors, other physicochemical			
	parameters)			
6	Activity(Reports)			
7	Drug design and relationship of functional groups			
	to biological activity (hydrophilic/ hydrophobic			
	properties)			
8	Drug design and relationship of functional groups			
	to biological activity (resistance to chemical and			
	enzymatic degradation)			
9	Relationship between molecular structure and			
	biological activity			
10	Docking (Introduction)			
11	Docking (procedures)			

Faculty of Pharmacy

Programs and Courses specifications

12	Activity(Reports)	
13	Applications of drug design (self destruct drugs,	
	peptidomimetics)	
14	Applications of drug design (targeting drugs)	
15	Written exam	

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussions

6- Student Assessment methods:

Written exams to assess: a1,a2,a3&b1

Oral exams to asses: a1,a2,a3&b1

Activities to asses: d1

Assessment schedule:

Assessment (1): Activity	Week 6-12
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

i- Burger's medicinal chemistry and drug discovery

Edited by Manfred E.wolff(2006)

ii- Computer-aided molecular design

Application of Agrochemicals, Materials & pharmaceuticals Edited by Charles H.Reynolds, M.Katharine Holloway and Harold K.COX(2003)

C- Suggested books:

i- The organic chemistry of drug design and drug action, second edition, Edited by Richard B.Silverman.(2005)

ii- Designing Bioactive molecules

Three dimensional Techniques and applications, Edited by Yvonne

C.Martin and Peter Willett. (2009)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, computers and data show.

Course Coordinators:

• Head of Department:

• Date تم اعتماد التوصيف بالقسم بتاريخ

Matrix I of Drug Design						
			ILO	Os of	Drug Design	ı course
	Course Contents		nowle and erstai	_	Intellectual skills	General and Transferable skills
		a1	a2	a3	b1	d1
1	Principles of drug design	х				
2	Combinatorial chemistry (combinatorial and parallel synthesis in medicinal chemistry projects)	x				
3	Combinatorial chemistry (solid phase techniques)	х				
4	QSAR (hydrophobicity, electronic effects)		X			
5	QSAR(steric factors, other physicochemical parameters)		X			
6	6 Activity(Reports)					X
7	Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)		х	х		
8	Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)		X	х		
9	Relationship between molecular structure and biological activity		X	X		
10	Docking (Introduction)			Х		
11	Docking (procedures)			Х		
12	Activity(Reports)					Х
13	Applications of drug design (self destruct drugs, peptidomimetics)				х	
14	Applications of drug design (targeting drugs)				x	

Matrix II of Drug Design

NARS	Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Methods of assessment		
					Lecture	Self learning	Written exam	Oral exam	Activities
2.1.3- Scientific developments in the area of specialization.	A.5- Understand principles of drug design and development	a1, a2,a3,b1	Principles of drug design. Combinatorial chemistry QSAR Drug design and relationship of functional groups to biological activity. Relatioship between molecular structure and biological activity Drug design and relationship of functional groups to biological activity. Relationship between molecular structure and biological activity Docking. Applications of drug design	Textbooks, Scientific papers and self learning	X	X	X	X	

2.4	2.4.4- Use variable sources to get information and knowledge.	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares	Activity (Reports)	Internet Textbooks		X			X	
-----	---	---	--------------------	-----------------------	--	---	--	--	---	--

Advanced Instrumental Analysis & chromatography I

Course specification of Advanced Instrumental Analysis & chromatography I

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: analytical chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2019

1- Basic information:

Title: Advanced Instrumental Analysis & chromatography I

Code: M101

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to demonstrate fundamental knowledge and basic theories in instrumental analysis, the concepts of diagnosing cardiac diseases, G.I.T diseases and infections through IR, HNMR and UV spectrophotometry **as well as** new aspects of (HPLC), HPLC/Mass, Gas Chromatography (GC) and GC/Mass and their medicinal applications.

3. Intended learning outcomes (ILOs) of Advanced

Instrumental Analysis & chromatography I

Knov	owledge and Understanding				
	Illustrate theories for separation of different components in				
a1	combined therapy and their determination quantitatively using				
	different instrumental techniques.				
a2	State medicinal and pharmaceutical applications of spectroscopy				
az	, HPLC and GC				
Intell	ntellectual skills				
h1	Analyze & interpret qualitative & quantitative data obtained from				
DI	instrumental analysis				
Gene	General and Transferable skills				
d1	Write reports and present it.				

4. Course Content of Advanced Instrumental Analysis & chromatography I:

Week number	Lecture contents (4hrs/week)
1	Advanced Ultra-violet spectroscopy
2	New aspects in vibrational spectroscopy (IR spectroscopy)
3	Application of Nuclear magnetic resonance (NMR)
4	Application of Mass spectrometry(MS)
5	Medicinal application of spectroscopy in diagnosis of diseases
6	Raman spectroscopy.
7	Advanced HPLC. Activity (Reports)

8	HPLC & its medicinal and pharmaceutical
	application
9	High performance thin layer chromatography
	(HPTLC).
10	Advanced Gas chromatography.
11	GC & its medicinal and pharmaceutical
	application
12	New aspects of Supercritical fluid
	chromatography (SFC) and ion exchange
	chromatography (IEC).
13	Capillary electrophoresis(CE)
14	Analytical application of dimeric and polymeric
	molecules.
	Activity (Reports)
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess: a1,a2&b1

Oral exams to assess: a1,a2&b1

Activities to asses: b1&d1

Assessment schedule:

Assessment (1): Activity	Week 7-14

Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

-Chemical stability of pharmaceuticals, Kenneth A. Connors, Kenneth Antonio Connors, Gordon L. Amidon, Valentino J. Stella

-Pharmaceutical process validation Robert A. Nash, Alfred H. Wachter (2006)

C- Suggested books:

-Photostability of drugs and drug formulations, Hanne Hjorth Tønnesen (2004)

-U.S.P. & B.P (2010)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

 $\underline{http://journals.tubitak.gov.tr/chem/index.php}$

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer and data show.

• Head of Department:

• Date: تم اعتماد التوصيف بمجلس القسم بتاريخ

Matrix I of Advanced Instrumental Analysis & chromatography I

		ILOs of Advanced Instrumental Analysis & chromatography I course							
Course Contents		Knowled understa		Intellectual skills	General and Transferable skills				
		a1	a2	b1	d1				
1	Advanced Ultra-violet spectroscopy	x	X	X					
2	New aspects of Vibrational spectroscopy (IR spectroscopy)	X	x	X					
3	Application of Nuclear magnetic resonance (NMR)	X	X	X					
4	Application of Mass spectrometry(MS)	X	X	X					
5	Medicinal application of spectroscopy in diagnosis of diseases		x	X					
6	Raman spectroscopy.	X							
7	Advanced HPLC. Activity (Reports)	X		X	X				
8	HPLC & its medicinal and pharmaceutical application		х						
9	High performance thin layer chromatography (HPTLC)	X		X					
10	Advanced Gas chromatography	X							
11	GC & its medicinal and pharmaceutical application		X	X					
12	New aspects of Supercritical fluid chromatography (SFC) and ion exchange chromatography (IEC)	X	X						
13	Capillary electrophoresis(CE)	Х	Х						
14	Analytical application of dimeric and polymeric molecules. Activity (Reports)		X	X	х				
15	Revision and open discussion	X	X	X					

Matrix II of Advanced Instrumental Analysis & chromatography I

NARS		Program Course ILOs ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment			
						Lecture	Self learnin g	Written exam	Oral exam	Activities	
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics	a1	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Raman spectroscopy Advanced HPLC High performance liguid chromatography HPTLC Advanced Gas chromatography New aspects of Supercritical	Textbooks, Scientific papers and self learning	X	X	X	X		

			fluid chromatography (SFC) Capillary electrophoresis(CE)						
2.1.3- Scintific development in the area of specialization	analytical chemistry	a2	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Medicinal application of spectroscopy in diagnosis of diseases Advanced HPLC & its medicinal and pharmaceutical application Advanced GC & its medicinal and pharmaceutical application New aspects of Supercritical fluid chromatography (SFC) Capillary electrophoresis(CE) Analytical application of dimeric and polymeric molecules.	Textbooks, Scientific papers and self learning	X	X	x	X	

2.2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in specific and suitable form.	b1	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Medicinal application of spectroscopy in diagnosis of diseases Advanced HPLC & its medicinal and pharmaceutical application Advanced GC & its medicinal and pharmaceutical application	Textbooks, Scientific papers and self learning	X	X	X	X	
2.4	2.4.2- Effectively use information technology in professional learning needs	D.2- Demonstrate computer skills such as internet, word processing, chemometeric and kinetics softwares.	d1	Activity (Reports)	Internet Textbooks		X			X

Good practice for analysis of drugs and quality control

Course specification of Good practice for analysis of drugs and quality control

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval: 2019

1- Basic information:

Title: Quality in Instrumental Analysis and Quality Control

Code: ME3

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to: choose & develop suitable analytical methodology and find an effective solution for a given complex problem.

3. Intended learning outcome s (ILOs) of Good practice for analysis of drugs and quality control

Knov	vledge and Understanding
a1	Outline the new aspects in drug analysis & quality control
a2	Express up-to-date information in the field of drug analysis
a3	Illustrate the applications of quality control & quality assurance
Intel	lectual skills
b1	Analyze & evaluate obtained results qualitatively &
	quantitatively
b2	Evaluate GMP to avoid any hazards
Gene	ral and Transferable Skills
d1	Improve professional abilities by evaluation of information from
	different sources.
d2	Write reports and present it.

4. Course Content:

Week number	Lecture contents (4hrs/week)
1	Validation parameters in analysis
2	Application of quantitative analysis for different
	drugs.
3	Quality control and how to minimize the
	synthesis errors.
4	Quality assurance and basic requirement.
5	Applications of Spectrophotometric analysis for
	dosage forms
	Activity
6	H ¹ ,C ¹³ ,N ¹⁵ ,F ¹⁹ - NMR
7	Advanced techniques in mass spectroscopy
8	Atomic absorption
9	Fluorimetric analysis

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

10	Radioimmune Assay
11	Electrophoresis
12	Advanced GC-MS chemistry
	Activity
13	Spectrodenistometric (TLC scanner)
14	Forensic chemistry
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion

6- Student Assessment methods:

Written exams to assess: a1, a2, a3,b1,b2,d1&d2 Oral exams to assess: a1, a2, a3,b1,b2,d1&d2

Activities to assess: d1&d2

Assessment schedule:

Assessment (1): Activity	Week 5-12
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

Halpern, A in "Experimental physical chemistry" (2007)

Oxtoby, D and Nachtrieb, N in "Principles of Modern chemistry" (2009)

C- Suggested books:

Garfied, F.M., Klesta, E and Hirsch, J in Quality Assurance Principles for Analytical Laboratories (2011)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

• Course Coordinators:

- Head of Department
- تم اعتماد توصيف المقرر بمجلس القسم بتاريخ Date •

Matrix I of Good practice for analysis of drugs and quality control

		ILOs of Quality in Instrumental Analysis and Quality Control course									
	Course Contents		nowle and lersta	_		lectual cills	General and Transferable skills				
		a1	a2	a 3	b1	b 2	d1	d 2			
1	Validation parameters in analysis	х		Х							
_	Application of quantitative analysis										
2	for different drugs.	x	X	X							
	Quality control and how to minimize										
3	the systemic errors.	x		X	X						
	Quality assurance and basic										
4	requirements of GMP	X		X							
	Application of Spectrophotometric						X	X			
5	analysis(UV-VIS-IR)										
	Activity		X		X	X					
6	H ¹ ,C ¹³ ,N ¹⁵ ,F ¹⁹ - NMR	Х	Х			Х					
	Advanced techniques in mass										
7	spectroscopy		X			X					
8	Atomic absorption			X		X					
9	Fluorimetric analysis		X			X					
10	Radioimmune Assay		X								
11	Electrophoresis		X								
	Advanced GS-MS chemistry.						X	X			
12	Activity	X		x							
13	Spectrodenistometric (TLC scanner)	X		х	X						
14	Forensic chemistry.	х	X								

Matrix II of Good practice for analysis of drugs and quality control

NARS		NARS	Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment		
						Lecture	Self learnin g	Written exam	Oral exam	Activities	
	2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.2- Recognize good practice principles and environmental samples analysis.	a1,a2	Validation parameters in analysis Application of quantitative analysis for different drugs H¹,C¹³,N¹⁵,F¹⁰- NMR Forensic chemistry Spectrodenistometric (TLC scanner) Advanced GC-MS Techniques Application of quantitative analysis for different drugs Applications of Spectrophotometric	Textbooks, Scientific papers and self learning	X	X	X	X	

				analysis for dosage forms H1,C13,N15,F19 NMR Advanced techniques in mass spectroscopy Fluorimetric analysis Radioimmune Assay Electrophoresis Forensic chemistry						
1 1 1 1 1 1 1 1	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.	a3	Spectrodenistometric (TLC scanner) Atomic absorption GC-MS Techniques Validation parameters in analysis Application of quantitative analysis Quality control and how to minimize systemic erros. Quality assurance and basic requirements of GMP	Textbooks, Scientific papers and self learning	X	X	X	X	

2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	b1	Application of quantitative analysis for different drugs H ¹ ,C ¹³ ,N ¹⁵ ,F ¹⁹ - NMR	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.5-Identify possible hazards during work and how to deal with.	b2	Quality control and how to minimize systemic .erros Quality assurance and basic requirements of GMP	Textbooks, Scientific papers and self learning	X	X	X	х	

2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources.	d1	Activity (Reports)	Internet Textbooks	X		X
2.4.2- Effectively use information technology in professional practices	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.	d2	Activity (Reports)	Internet Textbooks	x		X

Zagazig university	Analytical Chemistry Department
Faculty of Pharmacy	Programs and Courses specifications

Drug Stability

Course specification of Drug stability

Course specifications:

- **Program on which the course is given:** Master of Pharmaceutical Sciences (Analytical chemistry)
- Major or Minor element of program: Major
- **Department offering the program:** analytical chemistry Dept.
- **Department offering the course:** Pharmaceutics Dept.
- Date of specification approval:

1- Basic information:

Title: **Drug stability** Code: ME2

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to describe the degradation of drugs and the methods to determine the order of reaction, illustrate the stability programs for pharmaceutical products and the latest regulations for stability testing and ability to predict the degradation pathways of a drug design a stabilization protocol and predict a product shelf-life and discuss regulations and methodologies for drug stability program.

3- Intended learning outcome s (ILOs) of Drug stability:

Know	ledge and Understanding						
a1	Illustrate the principles drug stability						
a2	Describe the regulations for drug stability program						
a3	Describe the methodologies for drug stability program						
Intelle	ectual skills						
b1	Suggest suitable stability methods for drugs in the various						
DI	dosage forms.						
b 2	Design in a self-directed and original research investigations on						
02	drug stability in dosage forms from degradation pathways						
Gener	General and Transferable skills						
d1	Use computer skills to present information						
d2	Collect information from a variety of sources						

4. Course Content of Drug stability:

Week number	Lecture content (4 hr/w)
1	Drug stability (Overview – importance)
2	Stability regulations (overview)
3	Critical regulatory requirements for a stability program
4	Global stability practices
5	 Understanding and predicting pharmaceutical product shelf life
6	Stability methodologies (overview)
7	Development of stability indicating methods(Presentation)
8	Overview of USP-NF requirements for stability
9	Non chromatographic methods for stability program
10	Vibrational spectroscopic methods for quantitative analysis
11	Evaluation of stability data
12	Qualification, calibration and maintenance of stability chambers
13	Stability operation practices
14	Stability studies in biologics(Final Presentation)
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Problem solving

6- Student Assessment methods:

Written exams to assess: a1, a2, a3, b1, b2 Oral exam to assess: a1, a2, a3, b1, b2

Activities to assess: d1, d2

Assessment schedule:

Assessment (1): Activity	Week 7-15
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A- Essential books: Drug Stability: Principles and Practices (Drugs and the Pharmaceutical Sciences) by Jens T. Carstensen and Christopher Rhodes (2000).

B- Suggested books:

- 1- Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices, Kim Huynh-Ba, 389 (2008).
- 2- Extended Stability for Parenteral Drugs, 5th Edition (Extended Stability of Parenteral Drugs), Fifth Edition, Caryn Dellamorte Bing R.PH. M.S. FASHP and Anna Nowobilski-Vasilios, American Society of Health-System Pharmacists; (2013)

C- Websites: Pubmed, Sciencedirect, Weilyinterscience

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, data show.

- Course Coordinators:
- Head of Department:
- Date: التوصيف بمجلس القسم

	Matrix I of Drug Stability										
			ILOs of drug stability course								
	Course Contents		Knowledge and understanding			ectual ills	Transferable and general skills				
		a1	a2	a3	b1	b2	d1	d2			
1	Drug stability (Overview – importance)	X									
2	Stability regulations (overview)		X								
3	Critical regulatory requirements for a stability program		X								
4	Global stability practices		X								
5	Understanding and predicting pharmaceutical product shelf life		X			X					
6	Stability methodologies (overview)			X							
7	Development of stability indicating methods (Presentation)			X			X	X			
8	Overview of USP-NF requirements for stability			X							
9	Non chromatographic methods for stability program			X	X						
10	Vibrational spectroscopic methods for quantitative analysis			X	X						
11	Evaluation of stability data			X	X						
12	Qualification, calibration and maintenance of stability chambers			X							
13	Stability operation practices			X							
14	Stability studies in biologics			X							
15	Open discussion (Final Presentation)	X	X	X	X	X	X	X			

Matrix II of Drug stability

NARS		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment		
		1205				Lecture	Self learning	Written exam	Oral Exam	Activity
			a1	Drug stability (Overview – importance)	Textbooks, Scientific papers and self learning	х	XX	X	х	
2.1	2.1.3- Scientific developments in the area of specialization.	A.6- Figure out drug stability features and kinetics chemistry.	a2	Stability regulations (overview) Critical regulatory requirements for a stability program Global stability practices Understanding and predicting pharmaceutical product shelf life	Textbooks, Scientific papers and self learning	X	X	X	X	

		a3	Stability methodologies (overview) Development of stability indicating methods Overview of USP-NF requirements for stability Non chromatographic methods for stability program Vibrational spectroscopic methods for quantitative analysis Evaluation of stability data Qualification, calibration and maintenance of stability chambers Qualification, calibration and maintenance of stability chambers Stability operation practices Stability studies in biologics	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2.6- Plan to improve performance in the field of specialization.	B.7- Design a laboratory protocol for a requested analytical issue.	b1	Understanding and predicting pharmaceutical product shelf life	Textbooks, Scientific papers and self learning	X	х	х	х	

2.2			b2	Non chromatographic methods for stability program Vibrational spectroscopic methods for quantitative analysis Evaluation of stability data	Textbooks, Scientific papers and self learning	X	X	X	X	
2.4	2.4.2- Effectively use information technology in professional practices	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity	Textbooks , Scientific papers and self learning		X			X

2.4.4- Use variable sources to get information and knowledge.	information from	d2	Activity	Textbooks , Scientific papers and self learning	х		x

Special Courses

Potentiometry, Voltammetry and Electrochemical sensors

Course specification of Potentiometry, Voltammetry and Electrochemical sensors

A-Course specifications:

 Program on which the course is given: Master's of Pharmaceutical Sciences (Analytical chemistry)

• Major or Minor element of program: Major

• Department offering the program: Analytical Chemistry.

• Department offering the course: Analytical Chemistry.

• Date of specification approval: 2019

1- Basic information:

Title: Potentiometry, Voltammetry and Electrochemical sensors

Code: Asp1

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students should be able to outline principles and procedures of different potentiometric, ion selective and voltammetric methods of analysis, describe different types of electrochemical sensors and apply these techniques to analyze different analytes. Method development and validation will be covered as well.

3. Intended learning outcome s (ILOs) of Potentiometry, Voltammetry and Electrochemical sensors:

A- K	nowledge and Understanding
a1	Outline the basis and principles of potentiometric, voltammetric
ат	and ion selective electrode.
a2	Describe different types of ion-selective electrodes and
az	electrochemical sensors.
a3	Mention different applications of potentiometry, voltammetry and
	ion selective electrode.
B- In	tellectual skills
b ₁	Design appropriate experiment for assay of different substances.
\mathbf{b}_2	Assess the problems encountered during analytical procedures.
D- G	eneral and Transferable skills
\mathbf{d}_1	Acquire Computer skills like preparing presentations and
u ₁	collecting information through different data-bases.
\mathbf{d}_2	Work effectively in a team
d ₃	Improve scientific brain storming and problem solving skills

4. Course Contents of Potentiometry, Voltammetry and Electrochemical sensors:

Week number	Content
1	Introduction to electrochemistry.
2	Potentionmetry:
	Introduction
	Principles of potentiometric measurements.
3	Reference electrodes and Metallic indicator
	electrodes.
4	Ion Selective Electrodes

	Theory
	Glass electrodes
5	Ion Selective Electrodes
	Liquid membrane electrodes
	Applications
6	Ion Selective Electrodes
	Solid state electrodes
	Coated wire electrodes
7	Applications of Potentiometry.
8	Voltammetry:
	Introduction
	Principles of voltammetric measurements.
	Activity
9	Voltammograms
10	Quantitative and Qualitative aspects of voltammetry
11	Voltametric Techniques
12	Quantitative voltammetric applications
13	Characterization voltammetric applications
14	Electrochemical Sensors
15	Written Exam
	ı

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Assignments

Faculty of Pharmacy

6- Student Assessment methods:

Written exams to assess: a1, a2, a3, b1, b2

Oral exam to assess: a1, a2, b1 and b2

Activity to assess: d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

- 1-Analytical Electrochemistry, Joseph Wang, Wiley-VCH, 2000.
- 2- Modern Analytical Chemistry, David Harvey, McGraw-Hill

C-Websites/Journals:

Companies, 2000.

Electrochemistry

Drug Testing and Analysis

Analytical Letters

www.sciencedirect.com

Faculty of Pharmacy

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Magda El-Maamli Prof. Hanaa Saleh
- Head of Department: Prof. Dr. Magda El-Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

Matrix I of Potentiometry, Voltammetry and Electrochemical sensors

					ILOs				
	Course Contents		vledge a	Intellectual skills		General and Transferable skills		able	
		a1	a2	a3	b1	b 2	\mathbf{d}_1	\mathbf{d}_2	d ₃
1	Introduction to electrochemistry	X							
2	Potentionmetry: *Introduction *Principles of potentiometric measurements.	x							
3	Reference electrodes and Metallic indicator electrodes.		X						
4	Ion Selective Electrodes *Theory *Glass electrodes	x	X						
5	Ion Selective Electrodes *Liquid membrane electrodes *Applications		X	x	x	X			
6	Ion Selective Electrodes *Solid state electrodes *Coated wire electrodes		x						
7	Applications of Potentiometry .			X	X	X			
8	Voltammetry: *Introduction * Principles of voltammetric measurements. Activity	x					X	X	X
9	Voltammograms	X							
10	Quantitative and Qualitative aspects of voltammetry			x	X	X			
11	Voltametric Techniques	X							
12	Quantitative voltammetric applications			X	X	X			

Zagazig university

Analytical Chemistry Department

Faculty of Pharmacy

13	Characterization voltammetric applications		X	X	X		
14	Electrochemical Sensors	X					

Matrix II of Potentiometry, Voltammetry and Electrochemical sensors **Teaching and** Method of learning Course assessment **NARS Program ILOs Course contents** Sources methods **ILOs** Oral Activity written self learning lecture Exam exam Introduction to electrochemistry--Potentionmetry: A.1- Illustrate the basics of Introduction and 2.1.1- Theories and analytical chemistry and Principles of potentiometric Textbooks. fundamentals related related subjects including: measurements.--Ion Selective Scientific to the field of Electrodes: 2.1 instrumental analysis, a1 X X Х papers and self spectrophotometry, Theory--Voltammetry: learning as well as in learning electrochemistry and related areas. Introduction physical chemistry. and Principles of voltammetric measurements--Voltammograms---Voltametric Techniques

				Reference electrodes and						
				Metallic indicator electrodes						
				Glass electrodesLiquid						
			a2	membrane electrodesSolid					х	
				state electrodes						
				Coated wire electrodes						
				Electrochemical Sensors						
				Ion Selective Electrode:						
	2.1.2- Mutual A.3- Identify the major	A 2 Identify the major		ApplicationsApplications of						
	influence between	impact and applications of analytical chemistry in		PotentiometryQuantitative	Textbooks,					
	professional practice		a3	and Qualitative aspects of	Scientific					
	and its impact on the			voltammetryQuantitative	papers and self	X	X	X	X	
	environment.	science, industries and environment.		voltammetric applications	learning					
	environment.	environment.		Characterization voltammetric						
				applications						
				Ion Selective Electrode:						
				ApplicationsApplications of						
	2.2.6- Plan to	B.7- Design a laboratory		PotentiometryQuantitative						
	improve performance		b1	and Qualitative aspects of	Textbooks, Scientific					
2.2	in the field of	protocol for a requested analytica issue.	01	voltammetryQuantitative	papers and self	X	X	X	X	
	specialization.			voltammetric applications	learning					
				Characterization voltammetric						
				applications						

2.2.7- Professional			Ion Selective Electrode:						
decision-making in the contexts of diverse disciplines.	B.8- Assess problems encountered during analytical assay and make professional decisions.	b2	ApplicationsApplications of PotentiometryQuantitative and Qualitative aspects of voltammetryQuantitative voltammetric applications Characterization voltammetric	Textbooks, Scientific papers and self learning	X	X	X	X	
2.4.2 Figs. 4: 1			applications						
2.4.2- Effectively use information technology in professional practices	D.2- Demonstrate computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity						X
2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member. D.7- Acquire team leader skills for the future work.	d2	Activity						x

2.4.5- Set criteria						X
and parameters to						
evaluate the	D.5. Evaluate the					
performance of	D.5- Evaluate the	d3	Activity			
others	performance of others.					

Kinetic methods of analysis

Course specification of Kinetic methods of analysis

A-Course specifications:

Program on which the course is given: Master's of Pharmaceutical
 Sciences (Analytical chemistry)

• Major or Minor element of program: Major

• Department offering the program: Analytical Chemistry.

• Department offering the course: Analytical Chemistry.

• Date of specification approval: 2019

1- Basic information:

Title: **Kinetic methods of analysis** Code: Asp2

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students should be able to outline the principles of kinetics, reaction rates and factors affecting them, apply studied kinetic methods for determination of different pharmaceutical compounds and describe the analysis of kinetic results.

3. Intended learning outcomes (ILOs) of Kinetic methods of analysis:

A- K	nowledge and Understanding
a1	Outline the principles of kinetics, reaction rates and factors
aı	affecting them.
a2	Describe kinetic methods of analysis.
a3	Outline the moral code for maintaining the quality of analytical
as	measures.
a4	Outline the basic steps toward quality of analytical measurements.
a5	State ethical approach implementation during analytical process.
B- In	tellectual skills
h	Manipulate data, calculate activation energy and interpret kinetic
b ₁	results
1.	Suggest the most appropriate kinetic method of analysis for the
\mathbf{b}_2	assay of a chosen analyte.
D- G	eneral and Transferable Skills
	Retrieve information from various sources in the field of analytical
\mathbf{d}_1	chemistry.
\mathbf{d}_2	Optimize work hours and manipulate time threats
d ₃	Study independently with presentation of research results.

4. Course Contents of Kinetic methods of analysis:

Week number	Contents
1	Mechanisms of chemical reactions
2	Rates of the reaction and their measurement
3	Order of the reaction (zero and first order)
4	Order of the reaction (second and third order)

Faculty of Pharmacy

Programs and Courses specifications

5	Methods for the determination of the order of the
	reaction
	 Integration method
	b)Method of equi-fractional part
6	Concentrations and Time: Half- Lives
7	Pseudo-order reactions
8	Molecularity of a reaction
	• Activity
9	Theories of reaction rate:
	Collision theory
10	Theories of reaction rate:
	Transition state theory
11	Catalysis
12	Kinetic methods of analysis and the
	interpretation of kinetic results.
13	Activation energy (Ea), Determination of rate
	constant and Ea (Arrhenuis plot)
14	The Quality of Analytical Measurements
	Average run length: cusum charts
	Proficiency testing schemes
	Collaborative trials
	Uncertainty
	Acceptable sampling
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning

Zagazig university

Faculty of Pharmacy

Programs and Courses specifications

• Problem solving and brain storming

• Open discussion

6- Student Assessment methods:

Written exams to assess: a1, a2, a3, a4,a5, b1, b2

Oral exam to assess: a1, a2, a3, a4,a5, b1, b2

Activity to assess: d1,d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

Chemical Kinetics: From Molecular Structure to Chemical Reactivity, By Luis G Arnaut, Sebastiao Jose Formosinho, Hugh Burrows, Oxford 1st ed 2007.

C- Suggested books:

Chemical Kinetics And Reaction Dynamics, Paul L. Houston, McGraw Hill comp., 2001.

D- Websites:

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Dr. Magda El-Maamli Dr. Heba El-Sayed
- Head of Department: Prof. Dr. Magda El Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

	Matrix I of Kinetic methods of analysis												
						I	LOs						
	Course Contents			Knowledge and understanding				Intellectual skills		neral a nsferal Skills			
		a1	a2	a3	a4	a5	b1	b2	d1	d2	d3		
1	Mechanisms of chemical reactions	X											
2	Rates of the reaction and their measurement	X											
3	zero and first order Reactions	X											
4	second and third order reactions	X											
5	Methods for the determination of the order of the reaction	X											
6	Concentrations and Time: Half- Lives	X											
7	Pseudo-order reactions	X											
8	Molecularity of a reaction Activity	X							x	X	X		
9	Collision theory	X											
10	Transition state theory	X											
11	Catalysis	X											
12	Kinetic methods of analysis and interpretation of kinetic results.		x				X	X					
13	Activation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)						X						
14	The Quality of Analytical Measurements Average run length: cusum charts Proficiency testing schemes Collaborative trials Uncertainty Acceptable sampling			x	x	x							

Matrix II of Kinetic methods of analysis

	NARS	Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Method of assessment		
						Lecture	Self learning	Written exam	Oral Exam	Activity
2.11	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.	a1	Mechanisms of chemical reactionsRates of the reaction and their measurementZero, First, Second and Third order of reactionMethods for determining reaction orderConc. And TimePseudo order reactionMolecularity of ReactionCollision TheoryTransition state theoryCatalysis	Textbooks, Scientific papers and self learning	x	X	X	X	

2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.6- Figure out drug stability features and kinetics chemistry.	a2, a3	Kinetic methods of analysis and the interpretation of kinetic results Proficiency testing schemes Collaborative trials Uncertainty Acceptable sampling	Textbooks, Scientific papers and self learning	х	X	X	X	
2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.	a4	The Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	x	X	x	
2.1.6- The fundamentals and ethics of scientific research.	A.9- Demonstrate full awareness of ethics in all aspects analytical techniques.	a5	the Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	x	x	x	

	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	b1	Kinetic methods of analysis and interpretation of kinetic resultsActivation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)	Textbooks, Scientific papers and self learning	x	X	X	x	
2.2	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Kinetic methods of analysis and interpretation of kinetic results	Textbooks, Scientific papers and self learning	х	x	X	х	
	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources.	dl	Activity						х
	2.4.7- Manage time effectively.	D.8- Handle working hours appropriately.	d2	Activity						X
	2.4.6- Work in a team and lead teams carrying out various professional	D.9- Develop problem solving, decision making as well as research skills	d3	Activity						х

Lagazig university		Analytical Chemistry Department									
Faculty of Pharmacy		Programs and Courses specifications									
tasks.											

Spectrophotometry

Course specification of Spectrophotometry

A- Course specifications:

 Program on which the course is given: Master's of Pharmaceutical Sciences (Analytical Chemistry)

• Major or Minor element of program: Major

• Department offering the program: Analytical Chemistry.

• Department offering the course: Analytical Chemistry.

• Date of specification approval: 2019

1- Basic information:

Title: **Spectrophotometry** Code: Asp3

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4hrs/week

2- Overall aim of the course:

On completion of the course, the students should be able to outline the principles of spectrophotometry, describe theories, operation, instrumentation and applications of spectrophotometry and related techniques, state the main theories, advantages and disadvantages of spectrophotometry, derivative spectrophotometry and flow injection spectrophotometry. Student will be also able to explain the basic of spectrophotometer, components carrying out different measurements on spectral analyzers after selecting the most appropriate assay design for the chosen analyte taking into consideration the nature and stability of compounds as well as economical and environmental factors and apply these techniques in the analysis of raw materials, pharmaceutical preparations and biological sample

3. Intended learning outcomes (ILOs) of Spectrophotometry:

A- K	nowledge and Understanding	
a1	Demonstrate the principles, instrumentation and operation of	
	spectrophotometry, derivative spectrophotometry and flow	
	injection spectrophotometry.	
	Describe the instrumentation, pharmaceutical and biological	
a2	applications of spectrophotometry, derivative spectrophotometry	
	and flow injection spectrophotometry.	
B- Intellectual skills		
b ₁	Determine the most appropriate assay design for the chosen	
	analyte.	
D- G	eneral and Transferable Skills	
\mathbf{d}_1	Retrieve information from various sources in the field of analytical	
u ₁	chemistry.	
\mathbf{d}_2	Work effectively with other researchers and judge their work.	
d ₃	Carry out responsibilities of either team leader or member.	

4. Course Contents of Spectrophotometry:

Week number	Contents			
1	Introduction to light absorption			
	Electromagnetic spectrum			
	Visible and ultraviolet spectra			
	The Beer-Lambert law			
	Deviation from Beer-Lambert law			
2	Spectra of some important naturally occurring			
	chromophores			
3	Spectrophotometer configuration			
4	Choice of spectrophotometer operating conditions			

Use of spectrophotometer
Baseline
Isosbestic points
Wavelength and absorbance calibration
Choice and use of cuvettes
Detailed examples
Derivative spectrophotometry
Introduction
Instrumentation
Derivative spectrophotometry
Practical Aspects
Applications
Spectrophotometric assays
Introduction
Assay Design
Activity
Spectrophotometeric assay of protein
Enzyme based spectrophotometric assay
Luminescence based assay
Flow-injection spectrophotometry
Pharmaceutical and biological applications of
spectrophotometry
spectrophotometry
Revision & Open Discussion

5- Teaching and Learning Methods:

- Lectures
- Self learning

Zagazig university

Faculty of Pharmacy

Programs and Courses specifications

- Open discussion
- Critical thinking
- Cooperative assignments

6- Student Assessment methods:

Written exams to assess: a1, a2, b1

Oral exam to assess: a1, a2, b1

Activity to assess: d1, d2, d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage		
• Activity	10	10 %		
Written exam	75	75 %		
Oral exam	15	15 %		
TOTAL	100	100%		

7- References and books:

A-Scientific papers

B- Essential books:

Spectrophotometry and spectrofluorimetry, Michael G. Gore, Oxford University press, 2000.

C- Suggested books:

UV-visible spectrophotometry of water and wastewater, Olivier Thomas, Christopher Burgess, Elsevier, 2007.

Websites/Journals:

Spectrochemica Acta

Spectroscopy

Analytical Chemistry

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof Dr/ Magda El-Henawee Head of Department: Prof. Dr. Magda El-Henawee
- Date:

Matrix I of Spectrophotometry								
			ILOs					
Course Contents		Knowledge and Understanding		Intellectual skills	General and Transferable Skills			
			a2	b1	d1	d2	d3	
1	Introduction to light absorption	X						
2	Spectra of some important naturally occurring chromophores	x						
3	Spectrophotometer configuration	X						
4	Choice of spectrophotometer operating conditions	x						
5	Use of spectrophotometer	X						
6	Derivative spectrophotometry *Introduction *Instrumentation	x						
7	Derivative spectrophotometry *Practical Aspects *Applications		x	x				
8	Spectrophotometric assays *Introduction *Assay Design Activity		x	X	X			
9	Spectrophotometeric assay of protein		X	X				
10	Enzyme based spectrophotometric assay		X	X				
11	Luminescence based assay		X	X				
12	Flow-injection spectrophotometry Pharmacoutical and histograph applications of	X	X	X				
13	Pharmaceutical and biological applications of spectrophotometry		X	X				
14	Revision	X	X	X				

Matrix II of Spectrophotometry Teaching and Method of assessment learning **Program** Course **Course contents NARS Sources** methods **ILOs ILOs** Oral Activity Self Written Lecture Exam learning exam Introduction to light absorption---Spectra of A.1- Illustrate the some important naturally basics of analytical occurring chromophores-chemistry and -Spectrophotometer 2.1.1- Theories related subjects configuration----Choice of and including: fundamentals spectrophotometer Textbooks. instrumental Scientific operating conditions--related to the a1 2.1 X X X analysis, papers and field of learning Use of spectrophotometerself learning spectrophotometry, as well as in --Derivative electrochemistry, spectrophotometry related areas. physical chemistry *Introduction and and kinetic Instrumentation ----Flowchemistry. injection spectrophotometry

2.2	2.2.6- Plan to improve performance in the field of specialization.	B.7- Design a laboratory protocol for a requested analytical issue.	b1	Derivative spectrophotometry *Practical Aspects *Applications Spectrophotometric assays Spectrophotometeric assay of proteinEnzyme based spectrophotometric assayLuminescence based assayFlow- injection spectrophotometry Pharmaceutical and biological applications of spectrophotometry	Textbooks, Scientific papers and self learning	X	X	X	X	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources	d1	Activity						x

2.4	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others chemists performance in the team.	d2	Activity			x
2.4	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member. D.7- Acquire team leader skills for the future work.	d3	Activity			X

Thesis Specification

Thesis of Master Degree

A-Thesis specifications:

- **Program on which the course is given:** Master of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- **Department offering the program:** Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval: 2019

1- Basic information:

- Title: Master Thesis in Analytical chemistry
- Credit hours: 30 hrs

2- Overall aim of the thesis:

On completion of the thesis; the students will be able to design a robust study to answer the research questions, identify and perform different analytical techniques and methods used for the experimental work according to the designed protocol, analyze results of the study in the light of prior knowledge and also draw conclusions about the contribution to knowledge by the study

3- Intended learning outcome's (ILOs):

Knov	Knowledge and Understanding				
	Outline theoretical and advanced bases of analytical chemistry				
a1	related to main objectives of the thesis				
	Determine the problem the thesis will handle in correlation with				
a2	the community and surrounding environment				
	Explain clearly the principles of different and advanced				
a3	qualitative and quantitative analytical techniques				
a4	Understand any legal aspects related to the thesis work.				
_	Demonstrate GLP and quality assurance related to practical work				
a5	of the thesis				
a6	Identify and apply scientific experimental ethics.				
Intel	lectual skills				
	Solve problems related to practical work by obtained quantitative				
b 1	data from the practical work				
	Discuss professional problems and suggest solutions relay on				
b2	different pharmaceutical knowledge and recent information				
b3	Combine required specialties to manage the subject under study				
	Integrate scientific results and write report following conducting				
b4	research				
b 5	Manage risks and hazards related to professional practical area				
b6	Design a laboratory protocol for the work				
b 7	Decide what to do with full responsibility in scientific research				
Profe	Professional and practical skills				
c1	Apply different techniques related to practical thesis work.				
c2	Use and evaluate practical data to write report				
c3	Apply various biochemical techniques involved in the protocol				

Gene	General and Transferable skills			
d1	Communicate effectively with all people related to the work			
d2	Use information technology in review and thesis preparation			
d3	Evaluate the work and learning needs			
d4	Use various sources to get information about the subject understudy			
d5	Set rules for evaluation and judging others performance.			
d6	Work effectively as a member of a team			
d7	Acquire time management skills			
d8	Study independently and plan research studies.			

4. Thesis Content:

Steps	Content
1 st	Suggest the possible points/ problems of research that the candidate can
	work on in the frame of the aim of work and choose proper point
	related to the problems of the community and surrounding environment.
	Collect all available information about this subject by all possible means.
Use internet, journals, books and others thesis to get previous recent information about the subject understudy.	
	Design the protocol including the steps of work following the suitable timetable.
	Increase the awareness of the recent biochemical and analytical
	techniques that will be used during practical work and determined by the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.

	Continuous evaluation to the thesis outcome according to the schedule.
2 nd	Identify different practical techniques and methods to assess biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples
4 th	Communicate with supervisors to discuss results .
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).
	Present the results periodically in seminars.
	Write scientific reports on the obtained results with conclusive significance.
	Discuss obtained results in comparison with pervious literatures.
	Suggest possible recommendations based on the outcome of the thesis

and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and writing scientific papers.

5- Teaching and Learning Methods:

- Self learning (Activities, Research....)
- Research group meetings
- Departmental seminars
- Critical thinking
- Problem solving

6- References:

Book: How to Write a Master's Thesis, By Yvonne N. Bui, SAGE publications Inc, 2009.

Websites: Pubmed, Sciencedirect, Weilyinterscience

Other resources: Faculty and University libraries

Facilities required for:

- 1. **For practical work:** U.V spectrophotometer, Sonicator, Colorimeter, Flouremeter, HPLC.
- Head of Department: Prof. Dr.

تم اعتماد توصيف الرسالة في مجلس القسم بتاريخ /

Ph.D Degree

Program Specification

Program Specification

A- Basic Information

1- Program title: PhD. Pharm. Sci Degree in Analytical Chemistry

2- Program type: Single.

3- Faculty/ University: Faculty of Pharmacy, Zagazig University

4- Department: Analytical Chemistry

5- Coordinator:

6- Date of program specification approval:

7- Teaching language: English

8-External Evaluator: Prof. Dr. Gamal Saleh (Analytical Chemistry

department – Faculty of Pharmacy – Assuit University)

9- Internal Evaluator: Prof. Dr. Hisham Ezzat

10- Academic Reference Standards:

- c. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).
- d. The program ILOs were compared to the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK.

B- Professional Information

1- Program aims:

Analytical Chemistry Ph.D. is a program aimed for the enhancement of knowledge, skills and attitudes of chemists regarding analytical chemistry in different professional areas including research, drug analysis and also academic field.

The broad objectives of the Program are:

- 1. To acquire in-depth advanced theories underlying key areas of analytical science and their applications.
- 2. To develop practical skills for analyzing materials even in trace amounts and in complex matrices using modern analytical methods and instruments.
- 3. To provide master students with problem solving, research and data interpretation skills.
- 4. To investigate new approaches in drug analysis such as green analytical chemistry.

Consistency of the program aims with the mission of Faculty of Pharmacy:

The faculty of Pharmacy, Zagazig University aims to provide the local and regional community with highly qualified, multidisciplinary and professional pharmacists with ethical values. **The Analytical Chemistry Ph.D. program** is useful for graduates who work in different fields such as Research & Development Laboratories, Educational and Research institutes, Analytical and Bio-analytical laboratories, Medical Centers, Hospitals, Universities, National Quality Control & assurance Centers, Pharmaceutical Industry and Ministry of Health. Graduate students have an excellent chance to catch advanced positions such as group leaders and managers in these places.

Graduate attributes:

- **Ph.D. graduates** should acquire the required attributes & skills in various Pharmaceutical Analytical and bioanalytical Chemistry features including the following:
 - **1.** Have the required theoretical knowledge for analytical and bioanalytical techniques practice.
 - **2.** Demonstrate good application of analytical techniques with use of advanced analytical instrumentation.
 - **3.** Demonstrate problem solving, decision making, leadership, time management and communication skills.
 - **4.** Conduct research, starting from constructing experimental plans till writing and publishing scientific reports.
 - **5.** Demonstrate self learning abilities.
 - **6.** Work effectively either as a team leader or a member.

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and understanding qualities and develop skills appropriate for **Analytical chemistry Ph.D.** of sciences degree.

2-1- Knowledge and Understanding:

On successful completion of the PhD degree Program, students will be able to:

- A.1- Outline the theories and applications of advanced spectroscopy, electrochemistry and chromatography.
- A.2- Illustrate the recent scientific techniques in the field of analytical chemistry.
- A.3- Recall ethics, legal regulations and good laboratory practice principles in analytical research.
- A.4- Recognize the concepts and basics of laboratory safety and waste disposal.

A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.

2-2 - Intellectual Skills:

On successful completion of the PhD degree Program, students will be able to:

- B.1- Integrate knowledge to suggest the suitable analytical method for pharmaceutical, environmental and biological samples.
- B.2- Analyze and interpret analytical data.
- B.3 Identify possible hazards and biohazards during conducting research and routine work and how to deal with them safely.
- B.4 Define the analytical problem, conduct a research plan and write scientific reports including conclusions with scientific evidences.
- B.5 Design the appropriate practical protocol for analysis.
- B.6 Solve different analytical problems encountered during the application of the designed protocol.

2-3 - Professional and Practical Skills:

It is intended that, on successful completion of the PhD degree Program, students will be able to:

- C.1- Apply advanced analytical techniques with professional instrument operation.
- C.2- Work safely and efficiently in a laboratory.
- C.3- Develop and assess novel methods of analysis.
- C.4 Write reliable scientific reports and conclusions in pharmaceutical analysis.

2-4 - General and Transferable Skills:

On successful completion of the PhD degree Program, students will be able to:

- D.1- Communicate effectively with others through written and oral manners.
- D.2- Acquire advanced computer skills and train on new software used for instrumentation and data processing.
- D.3- Retrieve information from various sources in the field of analytical chemistry.
- D.4- Work effectively as a member of team.
- D.5- Study independently and plan research studies.
- D.6- Practice self assessment.
- D7- Demonstrate team leadership in different fields of the profession with the ability of evaluation of others performance.
- D8- Develop time management, problem solving and decision making skills.

3- Academic Standards:

- a. The program ILOs were compared to the general guideline for postgraduate studies, 1st Edition, February 2009 issued by (NAQAA) (National Authority for Quality Assurance and Accreditation).
- b. The program ILOs were compared to the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK.

Matrix1: Comparison of PhD. Pharm. Sci Degree in Analytical Chemistry program with the Academic Reference Standard {ARS, 2009} developed by NAQAAE

Attributes of the graduates	Attributes of the graduates
(ARS, 2009)	(PhD. Pharm. Sci Degree in
	Analytical Chemistry)

3. Apply the specialized knowledge he has acquired in his professional practice.	 Have the required theoretical knowledge for analytical and bioanalytical techniques practice. Demonstrate good application of analytical techniques with use of advanced analytical instrumentation.
2. Identify and solve professional problems.5. Take decisions using available information	3. Demonstrate problem solving, decision making, computer, time management and communication skills.
3. Show good communication and leadership skills	6. Work effectively either as a team leader or a member.
4. Use technology effectively in his	4. Conduct research, starting from
professional practice	constructing experimental plans till
6. Use available resources efficiently	writing and publishing scientific
7. Aware of his role in community	reports.
service and development	
8. Reflect commitment to integrity, credibility and accountability	
9. Be a lifelong learner and able to develop himself	5. Demonstrate self learning abilities.

Matrix 2: Comparison of PhD. Pharm. Sci Degree in Analytical
Chemistry program with the Academic Reference Standard {ARS, 2009}
developed by NAQAAE

	(ARS, 2009)	Program ILOs
	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas	A1. Outline the theories and applications of advanced spectroscopy, electrochemistry and chromatography. A.4- Recognize the concepts and
Knowledge and Understanding	2.1.2- Mutual influence between professional practice and its impact on the environment.	basics of laboratory safety and waste disposal. A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.
owledge and	2.1.3- Scientific developments in the area of specialization.	A.2- Illustrate the recent scientific methodologies in the field of analytical chemistry.
Kno	 2.1.4- Moral and legal principles for professional practice in the area of specialization. 2.1.5- Principles and the basics of quality in professional practice in the area of specialization. 2.1.6- The fundamentals 	A.3- Recall ethics, legal regulations and good laboratory practice principles in analytical research.

	and ethics of scientific	
	research.	
Intellectual Skills	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems 2.2.2- Solve specified problems in the lack or missing of some information. 2.2.3- Correlate and integrate different pharmaceutical knowledge	B.6 – Solve different analytical problems encountered during the application of the designed protocol. B.1- Integrate knowledge to

	2.2.6- Plan to improve performance in the field of specialization.	B.5 - Design the appropriate practical protocol for analysis.
	2.2.7- Professional decision-making in the contexts of diverse disciplines.	B.6 – Solve different analytical problems encountered during the application of the designed protocol.
ills	2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Apply advanced analytical techniques with professional instrument operation.
fessional and Practical Skills	2.3.2- Write and evaluate professional reports.	C.4 - Write reliable scientific reports and conclusions in pharmaceutical analysis.
Professional and	2.3.3- Assess methods and tools existing in the area of specialization.	C.2- Work safely and efficiently in a laboratory.C.3- Develop and assess novel methods of analysis.
 Transferable Ils	2.4.1- Communicate effectively.	D.1- Communicate effectively with others through written and oral manners.
General and Transferable Skills	2.4.2- Effectively use information technology in professional practices	D.2- Acquire advanced computer skills and train on new softwares used for instrumentation and data

		processing.
	.3- Self-assessment and ine his personal learning	D.6- Practice self assessment.
to	.4- Use variable sources get information and owledge.	D.3- Retrieve information from various sources in the field of analytical chemistry. D.4- Work effectively as a
para peri	ameters to evaluate the formance of others .6- Work in a team and d teams carrying out ious professional tasks. .7- Manage time	
2.4.	.7- Manage time ectively. .8- Continuous and self rning.	problem solving and decision making skills. D.5- Study independently and plan research studies.

Matrix 3: Comparison of PhD. Pharm. Sci. Degree in Analytical chemistry program ILOs and the MSc Analytical Chemistry provided by Birkbeck College, University of London, UK

	Birkbeck College, University of London, UK	Program ILOs
gt	1) Demonstrate a sound knowledge and understanding of the science underlying the key areas of analytical methodology and its practical applications.	A.1- Outline the theories and applications of advanced spectroscopy, electrochemistry and chromatography. A.5- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.
Knowledge and Understanding	2) Show a critical understanding of recent advances in their field of study	A.2- Illustrate the recent scientific methodologies in the field of analytical chemistry.
Knowledge	3) Critically assess current literature in the discipline	D.3- Retrieve information from various sources in the field of analytical chemistry.
	4) Formulate a research or method development plan and carry out the appropriate literature and data searches.	 B.4 - Define the analytical problem, conduct a research plan and write scientific reports including conclusions with scientific evidences. B.5 - Design the appropriate practical protocol for analysis.

	5) Demonstrate a critical and professional approach to quality of analysis.	A.3- Recall ethics, legal regulations and good laboratory practice principles in analytical research. A.4- Recognize the concepts and basics of laboratory safety and waste disposal.
	6) Select the most appropriate analytical method.	pharmaceutical, environmental and biological samples.
	data types.	B.2- Analyze and interpret analytical data.
Intellectual Skills	8) Show critical reasoning. 11) Formulate and test basic hypotheses. 12) Show independent	 B.4 - Define the analytical problem, conduct a research plan and write scientific reports including conclusions with scientific evidences. B.5 - Design the appropriate practical protocol for analysis. C.4 - Write reliable scientific reports and conclusions in pharmaceutical analysis.
	9) Gather and evaluate information.	D.3- Retrieve information from various sources in the field of analytical chemistry.
	10) Solve problems.	B.3 – Identify possible hazards and biohazards during conducting research and routine work and how to deal with them safely

		B.6 – Solve different analytical
		problems encountered during the
		application of the designed protocol
	13) Carry out chemical manipulations and operate advanced analytical equipment.	C.1- Apply advanced analytical techniques with professional instrument operation.
	14) Work safely and	
	efficiently in a laboratory	C.2- Work safely and efficiently in a
	carrying out risk assessments	laboratory.
ills	where appropriate.	
al Sk	15) Access a variety of	D.3- Retrieve information from
ıctica	subject-specific and more	various sources in the field of
d Pre	generic databases and	analytical chemistry.
ıl and	information sources.	
Professional and Practical Skills	16) Use molecular visualisation tools.	Not covered
, ,	17) Apply skills to practical	
	problems and, where	C.3- Develop and assess novel
	appropriate develop new	methods of analysis.
	skills.	
	18) Use different forms of IT	D.2- Acquire advanced computer skills
	confidently	and train on new software used for
		instrumentation and data processing.
and	19) Work as part of a team	D.4- Work effectively as a member of
Personal and social Skills	both in person and via virtual	team.
Pers soci	interaction.	D7- Demonstrate team leadership in

	different fields of the profession with the ability of evaluation of others
20) M (* CC* : 11)	performance
20) Manage time efficiently to balance the face-to-face and distance learning aspects of the programme	D8- Develop time management, problem solving and decision making skills.
	D.1- Communicate effectively with others through written and oral manners.
22) Learn independently.23) Show a professionalism in analytical science	D.5- Study independently and plan research studies. D.6- Practice self assessment.

4-Curriculum Structure and Contents:

a- Program duration: 3-5 years

b- Program structure:

- The PhD program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

1- Courses:

No. of credit hours for program courses:

Special: (3x4) 12

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic in the Pharmaceutical Sciences. To fulfill this requirement, the student must present (written and orally) a research proposal and write a thesis.

3- General University Requirements: 10 credit hours including:

- a- TOEFL (500 units)
- b- Computer course

c- Program Curriculum:

Course Code	Course Title	Credit hours	Program ILOs Covered						
	Special Courses:								
Asp4	Chemometric Analysis	4	A1, A2, B2, B3, B6, D2, D4, D5, D7, D8.						
Asp5	Advanced spectroscopy of Analytical chemistry	4	A1, A2, B1, B6, D3, D4, D5, D7.						
Asp6	Chromatographic Analysis of Pharmaceuticals	4	A1, A2, B1, B3, D3, D4, D5, D7.						
	Thesis	30	A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, B6, B7, C1, C2, C3, C4, D1, D2, D3, D4, D5, D6, D7, D8.						

5-Program admission requirements:

Applicants are admitted to PhD degree any time throughout the academic year upon fulfillment of the following:

- 1. The applicants should be holders of Bachelor in Pharmaceutical Sciences from any Faculty of Pharmacy and also finish M.Sc. degree affiliated to the Egyptian Universities affiliated to the Egyptian Supreme Council of Universities (ESCU).
- 2. Students should fulfill all the admission requirements stated by the concerned Departmental Board.

Regulations to complete the program:

Conditions of granting the degree

The Faculty Council, in compliance with the concerned Departmental Board as well as Graduate Studies and Research Committee recommendation awards the PhD degree upon fulfillment of the following requirements:

- 1. Carrying out a deep research in the area of specialization for at least two calendar years from the time of registration.
- 2. The student has to succeed in all courses examinations.
- 3. Acceptance of the research thesis by the judges Committee according to statement 104 of universities regulating law.

Cancellation of Registration

The Faculty Board is allowed to cancel registration for PhD programs in the following circumstances:

- 1. Student's failure to pass the course examinations for two times.
- 2. Student's nonattendance or unsatisfactory progress in research work being reported by the advisors to the Departmental Board and forwarded to the Graduate Studies and Research Committee for approval of cancellation.

Faculty of Pharmacy

- 3. Dissertation refusal by the Jury Committee.
- 4. Incapability of the student to graduate by the deadlines indicated

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS
Written exam	Knowledge and Understanding and Intellectual Skills
Oral exam	Knowledge and Understanding ,Intellectual Skills
	and General and Transferable Skills
Activity	Intellectual Skills and General and Transferable
	Skills.
	Knowledge and Understanding ,Intellectual Skills &
Seminars	General and Transferable Skills
	Professional and practical Skills & General and
Follow up	Transferable Skills
	Knowledge and Understanding, Intellectual Skills,
Thesis and oral	Professional and practical Skills & General and
presentation	Transferable Skills

Grade Scale	Grade point average	Numerical scale
	value (GPA)	
A+	5	≥ 95%
A	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%

Zagazig university

Faculty of Pharmacy

Programs and Courses specifications

C+	3	75- < 80%
С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%
F	1	< 60%

8-Failure in Courses:

Students who fail to get 60% (1 point).

9-Methods of program evaluation

Evaluator	Method	Sample
	Program evaluation	Program report
Internal evaluator:	Courses evaluation	Courses report
Professor Dr. Hisham		
Ezzat		
	Program evaluation	Program report
External evaluator:	Courses evaluation	Courses report
Professor Dr. Gamal		
Saleh		
Others methods	Matrix with ARS	The Matrix
	Questionnaires	Results of the
		questionnaires

Program coordinator

Head of Department

تم اعتماد توصيف البرنامج في مجلس القسم بتاريخ

							Matı	rix o	f Phl	D pro	gran	of Analy	ytical	che	mist	ry								
											Progra	am intended l	earning	outcon	nes									
Pro	ogram Courses			wledge erstan					Inte	llectual	skills			ofessic ractica				Ge	neral a	and tra	ansfera	able sk	cills	
		A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	C1	C2	C3	C4	D1	D2	D3	D4	D5	D6	D7	D8
S	Chemometric analysis	х	х					х	х			х						х		х	х		х	х
Special courses	Advanced Spectroscopy of Analytical chemistry	х	х				x					x							х	х	х		x	
Spe	Chromatographic analysis of pharmaceuticals	х	х				х		х										х	х	х		х	
	Thesis	x	×	x	х	x	x	x	×	х	x	х	х	x	×	x	х	x	x	×	х	x	x	>

Chemometric Analysis

Course specification of Chemometric Analysis

A- Course specifications:

• Program on which the course is given: Ph.D. of Pharmaceutical Sciences (Analytical chemistry)

• Major or Minor element of program: Major

• Department offering the program: Analytical Chemistry.

• Department offering the course: Analytical Chemistry.

• Date of specification approval: 2019

1- Basic information:

Title: Chemometric Analysis Code: Asp4

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to outline statistical and chemometrics methods used in analytical chemistry and apply chemometric analysis for different analytical problems.

3. Intended learning outcome s (ILOs) of Chemometric Analysis:

A- K	nowledge and Understanding
a1	Describe different types of multivariate chemometric UV spectrophotometric methods.
a2	outline different types of errors in quantitative analysis, statistical parameters of repeated measurements and significant tests.
B- In	tellectual skills
b ₁	Apply the proper multivariate chemometric method for quantitative determination of analytes in combination or in complex matrix.
b2	Apply the proper statistical parameters for determination of combination of errors and repeated measurements.
b3	Analyze and interpret the data.
b 4	Solve the problems encountered in the chemometric model application.
D- G	eneral and transferable Skills
d1	Acquire computer-aided analytical skills such as chemometric software.
d2	Work effectively in a team.
d3	Study independently.
d4	Improve problem solving skills

4. Course Contents of Chemometric Analysis:

Week number	Contents
1	Multivariate Analysis
	Initial analysis
	Principal component analysis

2	Multivariate Analysis
	Cluster analysis
	Discriminate analysis
3	Multivariate Analysis
	K-nearest neighbor method
	Disjoint class modeling
4	Multivariate Analysis
	Multiple regression
	Principal component regression
5	Multivariate Analysis
	Multivariate regression
	Partial least squares regression
6	Multivariate Analysis
	Multivariate calibration
	Artificial neural networks
7	Errors in quantitative analysis
8	Errors in quantitative analysis
	Activity
9	Statistics of Repeated Measurements
	Mean and standard deviation
	The distribution of repeated measurements
	The sampling distribution of the mean

10	Statistics of Repeated Measurements
	Confidence limits of the mean for large samples
	Presentation of results.
11	Statistics of Repeated Measurements
	Confidence limits of the geometric mean for a
	log-normal distribution
	Propagation of errors
12	Significance Tests
	Comparison of an experimental mean with a
	known value
	Comparison of two experimental means
	Paired t-test
13	Significance Tests
	One-sided and two-sided tests
	F-test for the comparison of standard deviations
	Outliers
	Analysis of variance
14	Significance Tests
	Comparison of several means
	The arithmetic of ANOVA calculations
	The chi-squared test
	Testing for normality of distribution
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Problem solving

6- Student Assessment methods:

Written exams to assess: a1, a2, b1, b2, b3, b4

Oral exam to assess: a1, a2, b1, b2, b3,b4

Activity to assess: d1, d2, d3 and d4

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B: Books:

Chemometrics, Data Analysis for the Laboratory and Chemical Plant, Richard G., (University of Bristol, UK, John Wiley & Sons, Ltd. 2003).

Statistics for Environmental Science and Management, Manly, B. F. J., (Chapman & Hall, 2001).

C- Websites:

www.sciencedirect.com

www.Pubmed.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

• Course Coordinators: Prof. Dr. Hanaa Salah
Prof. Dr. Hisham Ezzat

- Head of Department: Prof. Dr.
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

	Matrix I of Chemometric Analysis										
		ILOs									
	Course Contents		Knowledge and understanding		Intellectual skills			General and Transferable skills			
		a1	a2	b1	b 2	b3	b4	d1	d2	d3	d4
1	Multivariate Analysis Initial analysis Principal component analysis	x		x		x	x	x			x
2	Multivariate Analysis Cluster analysis Discriminate analysis	X		X		X	X	X			x
3	Multivariate Analysis K-nearest neighbor method Disjoint class modeling	x		x		X	X	x			X
4	Multivariate Analysis Multiple regression Principal component regression	x		x		X	X	X			X
5	Multivariate Analysis Multivariate regression Partial least squares regression	X		x		x	X	x			X
6	Multivariate Analysis Multivariate calibration Artificial neural networks	x		x		x	X	X			X
7	Errors in quantitative analysis		X		X	X	X	X			X
8	Errors in quantitative analysis Activity		x		X	x	X	x	x	X	X
9	Statistics of Repeated Measurements Mean and standard deviation The distribution of repeated measurements The sampling distribution of the mean		x		X	X	x	X			x
10	Statistics of Repeated Measurements Confidence limits of the mean for large samples Presentation of results.		x		X	X	X	Х			Х

Zagazig university

Analytical Chemistry Department

Faculty of Pharmacy

	Statistics of Repeated Measurements									
	Confidence limits of the									
11	geometric mean for a log-		X		X	X	X	X		X
	normal distribution									
	Propagation of errors									
	Significance Tests									
	Comparison of an experimental									
10	mean with a known value									
12	Comparison of two	X			X	X	X	X		X
	experimental means									
	Paired t-test									
	Significance Tests									
	One-sided and two-sided tests	x						x		
10	F-test for the comparison of						X			
13	standard deviations				X	X				X
	Outliers									
	Analysis of variance									
	Significance Tests									
	Comparison of several means									
	The arithmetic of ANOVA					X				
14	calculations		X		X		X	X		X
	The chi-squared test									
	Testing for normality of distribution									

Matrix II of chemometric analysis Teaching and Method of learning Source Course assessment **ARS Program ILOs Course contents** methods **ILOs** self written Oral Activity lecture learning Exam exam **Multivariate Analysis** Initial analysis, Principal component A.1- Illustrate the basics of analysis,Cluster 2.1.1- Theories and analytical chemistry and Textbooks analysis, Discriminate analysi, Krelated subjects with fundamentals related , Scientific nearest neighbor method, Disjoint 2.1 additional depth in a1,a2 to the field of papers and Х X Х class modeling, Multiple regression advanced spectroscopy, learning as well as in self ,Principal component regression, electrochemistry and related areas. learning Multivariate regression, Partial least chromatography. squares, regression, Multivariate calibration, Artificial neural

			networks						
			Errors in quantitative analysis						
			Statistics of Repeated						
			Measurements						
			Significance Tests						
			Comparison of an experimental						
			mean with a known value,						
			Comparison of two experimental						
			means, Paired t-test, One-sided and						
			two-sided tests, F-test for the						
			comparison of standard deviations,						
			Outliers, Analysis of variance,						
			Comparison of several means, The						
			arithmetic of ANOVA calculations,						
			The chi-squared test, Testing for						
			normality of distribution						
			Multivariate Analysis						
2.1.3- Scientific	A.2- Illustrate the recent		Initial analysis,Principal component	Textbooks					
developments in the	scientific methodologies in		analysis,Cluster	, Scientific					
area of	_	a1	analysis,Discriminate analysi, K-	papers and	X	x	X	X	
specialization.	the field of analytical		nearest neighbor method, Disjoint	self					
specianzation.	chemistry.		class modeling, Multiple regression	learning					
			,Principal component regression,						

				Multivariate regression, Partial least squares, regression, Multivariate calibration, Artificial neural networks						
2.2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.2- Analyze and interpret analytical data.	b3	All contents except Activity	Textbooks , Scientific papers and self learning	x	x	x	x	
	2.2.2- Solve specified problems in the lack or missing of some information.	B.3- Solve the problems which obstacle to research plan and research results.	b4	All contents except Activity	Textbooks , Scientific papers and self learning	X	х	X	х	

	2.2.6- Plan to improve performance in the field of specialization.	B.6- Design the appropriate practical protocol for analysis.	b1,b2	All contents except Activity	Textbooks , Scientific papers and self learning	X	X	X	x	
2.4	2.4.2- Effectively use information technology in professional practices	D.2- Acquire advanced computer skills and train on new softwares used for instrumentation and data processing.	d1	- All contents - Activity	Textbooks , Scientific papers and self learning	x	x	x	x	X
2.4	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.4- Work effectively as a member of team. D7- Demonstrate team leadership in different fields of the profession.	d2	- Activity						X

2.4.7- Manage time effectively.	D8- Develop time management, problem solving and decision making skills.	d4	- All contents - Activity	Textbooks , Scientific papers and self learning	X	X	X	x	X
2.4.8- Continuous and self learning.	D.5- Study independently and plan research studies.	d3	- Activity						X

Advanced Spectroscopy of Analytical Chemistry

Course specification of Advanced Spectroscopy of Analytical Chemistry

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval: 2019

1- Basic information:

Title: Advanced Spectroscopy of Analytical Chemistry

Code: Asp5

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to outline principles and procedures of different spectroscopic techniques such as NMR and Mass spectrometry, describe theories and apply studied spectroscopic techniques for the assay and detection of different analysis of pharmaceutical, biological or environmental origin, optimize and validate new methods to analyze professionally different sample components using the studied advanced techniques and Analyze active ingredients in different dosage forms, in biological fluids or of complex nature.

3. Intended learning outcomes (ILOs) of Advanced Spectroscopy of Analytical Chemistry:

A- K	nowledge and Understanding					
a1	Outline the basis and theory and operation of NMR and Mass and					
	tandem mass spectrometry.					
	Apply studied spectroscopic techniques for the assay and detection					
a2	of different analytes of pharmaceutical, biological or					
	environmental origin.					
a3	Describe an advanced technique for assaying analytes of complex					
	nature based on previous published and gained information.					
B- In	tellectual skills					
\mathbf{b}_1	Decide the use of the most appropriate instrumental technique in					
~1	pharmaceutical, biological assay or environmental assay.					
\mathbf{b}_2	Integrate the acquired knowledge in compound detection and					
~2	structure elucidation					
D- G	eneral and Transferable Skills					
d1	Retrieve information from various sources in the field of analytical					
	chemistry.					
d2	Work effectively as a member of team, and improve leadership					
u2	skills.					
d3	Study independently.					

4. Course Content of Advanced Spectroscopy of Analytical Chemistry:

Week number	Contents
1	Spectroscopy
	Introduction
	Theory
2	Classification of spectroscopic techniques
3	Nuclear magnetic resonance spectroscopy (NMR)
	Principals

	Vector Model
4	Nuclear magnetic resonance spectroscopy (NMR)
	Nuclear spin states
	Nuclear magnetic moments
	Absorption of Energy
	Resonance
5	Nuclear magnetic resonance spectroscopy (NMR)
	Chemical shift
	Local diamagnetic shielding
	Spin-spin splitting
6	Nuclear magnetic resonance spectroscopy (NMR)
	Typical ¹ H NMR absorptions by type of compound
7	Nuclear magnetic resonance spectroscopy (NMR)
	Carbon – 13 spectra, including heteronuclear coupling
	with other nuclei.
8	Mass Spectrometry
	Principle
	Mass spectrometer
	Sample introduction
	Activity
9	Mass Spectrometry
	Ionization methods:
	Electron ionization EI
	Chemical ionization CI
	Desorption ionization techniques (SIMS, FAB and
	MALDI)
	Electrospray ionization ESI

Faculty of Pharmacy

10	Mass Spectrometry
	Mass analysis
	Detection and Quantification
11	Tandem Mass Spectrometry (MS/MS)
	Introduction
	Scan modes
	Reactions studied in MS/MS
12	Tandem Mass Spectrometry (MS/MS)
	Applications:
	Structure elucidation
	Selective detection
	Ion-molecule reaction
13	Mass spectrometry/ Chromatography coupling
	Coupling techniques: GC/MS, HPLC/MS, CE/MS
	Pharmaceutical, biological and environmental
	applications
14	Revision
15	Written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Assignments
- Library visits

6- Student Assessment methods:

Written exams to assess: a1, a2, a3, b1, b2

Oral exam to assess: a1, a2, a3, b1, b2

Activity to assess: d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

1-Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman, BROOKS/COOL, 2009.

2- Mass Spectrometry, Principles and Applications, Edmond de Hoffmann, Vincent Stroobant, Johns Wiley and Sons Ltd, 2002.

Websites/Journals:

Rapid Communications in Mass Spectrometry

Spectrochemica Acta

Pharmaceutical and Biomedical Analysis

www.tandfonline.com/toc/lanl20/current (Analytical Letters) www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Dr. Mervat Hosny
- Head of Department:
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

Matrix I of Advanced Spectroscopy of Analytical Chemistry

		ILOs								
	Course Contents	Knowledge and understanding				Intellectual skills		General and Transferable Skills		
		a1	a2	a3	b1	b2	d1	d2	d3	
1	Spectroscopy *Introduction *Theory	X								
2	Classification of spectroscopic techniques	X								
3	NMR :*Principals *Vector Model	х								
4	NMR: *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance	x								
5	NMR: *Chemical shift *Local diamagnetic shielding *Spin-spin splitting	x								
6	Typical 1H NMR absorptions by type of compound	X								
7	Carbon – 13 spectra, including heteronuclear coupling with other nuclei	х								
8	Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction Activity						X	Х	х	
9	Mass Spectrometry: *Ionization methods	X								
Mass Spectrometry: *Mass analysis *Detection and Quantification			x		X					
11	MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS		X		X					
12	MS/MS: *Applications		X	X	X	X				
13	Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications		x	X	X	X				
14	Revision	x	x	X	X	X				

Matrix II of Advanced Spectroscopy of Analytical Chemistry Teaching and Method of learning Course Source assessment **ARS Program ILOs Course contents** methods **ILOs** self written Oral Activity lecture learning Exam exam Spectroscopy *Introduction *Theory Classification of spectroscopic techniques A.1- Illustrate the basics of NMR: *Principals *Vector Model 2.1.1- Theories and analytical chemistry and **Textbooks** *Nuclear spin states *Nuclear magnetic moments fundamentals related related subjects with , Scientific *Absorption of Energy *Resonance 2.1 to the field of additional depth in a1,a2 *Chemical shift *Local diamagnetic papers and X X shielding *Spin-spin splitting learning as well as in advanced spectroscopy, self Typical 1H NMR absorptions by type electrochemistry and related areas. learning of compound Carbon – 13 spectra, including chromatography. heteronuclear coupling with other nuclei

					Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction *Ionization methods *Mass analysis *Detection and Quantification MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS *Applications Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision						
		2.1.3- Scientific developments in the area of specialization.	A.2- Illustrate the recent scientific methodologies in the field of analytical chemistry.	a3	*Applications Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision	Textbooks , Scientific papers and self learning	X	X	X	x	
2	2.2	2.2.3- Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.1- Integrate knowledge to suggest the suitable analytical method for pharmaceutical, environmental and biological samples.	b2	*Applications Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision	Textbooks , Scientific papers and self learning	X	X	X	X	

	2.2.6- Plan to improve performance in the field of specialization.	B.6- Design the appropriate practical protocol for analysis.	b1	Mass analysis *Detection and Quantification MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS *Applications Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision	Textbooks , Scientific papers and self learning	X	x	x	x	
	2.4.4- Use variable sources to go information and knowledge.	from various sources in the field of analytical	d1	- Activity	Textbooks , Scientific papers and self learning					x
2	2.4.6- Work in team and lead team carrying out various professional tasks.	member of team. S D7- Demonstrate team	d2	- Activity						х

Faculty of Pharmacy

	2.4.8- Continuous and self learning.	D.5- Study independently and plan research studies.	d3	- Activity						X	
--	--------------------------------------	---	----	------------	--	--	--	--	--	---	--

Chromatographic Analysis of Pharmaceuticals

Course specification of Chromatographic Analysis of Pharmaceuticals

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences (Analytical Chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval: 2019

1- Basic information:

Title: Chromatographic Analysis of Pharmaceuticals

Code: Asp6

Lectures: 4 hrs/week Credit hours: 4 hrs/week

Total: 4 hrs/week

2- Overall aim of the course:

On completion of the course, the students will be able to outline practical ways of using chromatographic techniques for solving chemical problems qualitatively and quantitively and describe theories and applications of different chromatographic techniques.

3. Intended learning outcomes (ILOs) of Chromatographic Analysis of Pharmaceuticals:

A- K	Knowledge and Understanding					
a1	Outline the basis, theory and operation of chromatographic					
	analysis.					
a2	Describe the pharmaceutical and biological applications of					
u	chromatographic techniques.					
B- In	· Intellectual skills					
b ₁	Assess the problems encountered during analytical procedures.					
	Integrate the information and knowledge gained from the course in					
b2	developing new sensitive chromatographic methods using					
	appropriate reagents for the determination of different compounds.					
D- G	D- General and transferable Skills					
d1	Retrieve information from various sources in the field of analytical					
41	chemistry.					
d2	Work effectively as a member of team, and improve leadership					
u2	skills.					
d3	Study independently.					

4. Course Contents of Chromatographic Analysis of Pharmaceuticals:

Week number	Contents
1	General aspects of chromatography
	General concept of analytical chromatography
	The chromatogram
	Column efficiency
	Retention parameters
2	General aspects of chromatography
	Optimization of chromatographic analysis
	Classification of analytical techniques.
	Problems

3	Gas Chromatography
	Components of GC installation.
	Carrier gas and flow regulation.
	Sample introduction and the injection chamber
	Thermostatically controlled oven
	Columns
	Stationary Phases
4	Gas Chromatography
	Principal gas chromatographic detectors.
	Retention indexes and stationary phase constants
	problems and applications
5	High performance liquid chromatography
	The beginnings of HPLC.
	General concept of HPLC system.
	Pumps and gradient elution.
	Injectors.
	Columns.
6	High performance liquid chromatography
	Stationary phases.
	Mobile phases.
	Paired ion chromatography.
	Principal detectors.
	Applications and problems.
7	Ion chromatography
	Basics of ion chromatography
	Stationary phases
	Mobile phases.
	Conductivity detectors.

8	Ion Chromatography
	Areas of the peaks and data treatment.
	External standard method
	Internal standard method
	Problems and applications.
	Activity
9	Thin layer chromatography
	Principle of TLC.
	Characteristics of TLC.
	Stationary phases.
	Separation and retention parameters.
	Quantitative TLC.
	Problems.
10	Supercritical fluid chromatography
	Supercritical fluids.
	Instrumentation.
	SFC in chromatographic techniques.
11	Size exclusion chromatography
	Principle of SEC
	Stationary and mobile phases.
	Instrumentation and applications.
12	Capillary electrophoresis and
	electrochromatography
	Principal
	Instrumentation
	Capillary electrochomatography
	Problems and applications

13	Planar chromatography
	Introduction
	Materials and techniques
	Detection
	Method development*Applications
14	Revision and open discussion
15	written exam

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Open discussion
- Practical problem solving
- Troubleshooting

6- Student Assessment methods:

Written exams to assess: a1, a2, b1, b2
Oral exam to assess: a1, a2, b1, b2
Activity to assess: d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 15
Assessment (3): oral exam	Week 15

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B- Essential books:

1-Chemical Analysis, Modern Instrumentation Methods And Techniques, Francis Rouessac, and Annick Rouessac, John Wiley and Sons, Ltd, 2007.

2- Chromatographic analysis of pharmaceutics, John A. Adamovics, Marcel Dekker, 1997.

Websites/Journals:

www.sciencedirect.com

Journal of Chromatography A and B

Chromatographia

Journal of Liquid Chromatography

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof. Dr. Wafaa Hassan
 - Head of Department:

Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ

Activity

Matrix I of Chromatographic Analysis of Pharmaceuticals **ILOs** Knowledge General and Intellectual **Course Contents** and transferable skills understanding Skills **d1** d2d3b1 a1 **a2 b2** General aspects of chromatography:*General concept of analytical chromatography *The 1 X chromatogram *Column efficiency *Retention parameters General aspects of chromatography: *Optimization of chromatographic analysis *Classification of analytical techniques. 2 X X *Problems *Safety Measures all through the analytical process GC *Components of GC installation *Carrier gas and flow regulation. *Sample introduction and the injection chamber 3 X *Thermostatically controlled oven *Columns *Stationary Phases GC: *Principal gas chromatographic detectors. *Retention indexes and stationary X X X X phase constants *problems and applications HPLC: *The beginnings of HPLC *General concept of HPLC system *Pumps and 5 X gradient elution *Injectors *Columns HPLC: *Stationary phases *Mobile phases *Paired ion chromatography *Principal X X X \mathbf{X} detectors *Applications and problems Ion chromatography *Basics of ion chromatography *Stationary phases *Mobile X phases *Conductivity detectors Ion Chromatography: * Areas of the peaks and data treatment *External standard method *Internal standard method X X X X X X X *Problems and applications

Zagazig university

Analytical Chemistry Department

Faculty of Pharmacy

	TLC: * Principle *Characteristics of TLC							
9	*Stationary phases *Separation and retention	x	x	X				
	parameters *Quantitative TLC *Problems							
	SFC: * Supercritical fluids *Instrumentation							
10	*SFC in chromatographic techniques.	X						
	SEC: *Principle of SEC *Stationary and							
11	mobile phases *Instrumentation and	X	x		X			
	applications							
	CE and electrochromatography * Principal							
	*Instrumentation *Capillary							
12	electrochomatography *Problems and	X	X	X	X			
	applications							
	Planar chromatography: *							
	Introduction*Materials and techniques							
13	*Detection *Method development	X	X		X			
	*Applications							
14	Revision and open discussion	X	X	X	X			

Matrix II of Chromatographic Analysis of Pharmaceuticals Teaching and Method of learning **Source** Course assessment **ARS Program ILOs Course contents** methods **ILOs** S self written Oral Activity lecture learning Exam exam Spectroscopy *Introduction *Theory Classification of spectroscopic techniques A.1- Illustrate the basics of NMR: *Principals *Vector Model 2.1.1- Theories and analytical chemistry and Textbooks *Nuclear spin states *Nuclear magnetic moments related subjects with , Scientific fundamentals related *Absorption of Energy *Resonance additional depth in 2.1 to the field of a1,a2 *Chemical shift *Local diamagnetic papers and Х Х Х Х shielding *Spin-spin splitting learning as well as in advanced spectroscopy, self Typical 1H NMR absorptions by type electrochemistry and related areas. learning of compound Carbon – 13 spectra, including chromatography. heteronuclear coupling with other nuclei

			Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction *Ionization methods *Mass analysis *Detection and Quantification MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS *Applications Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision Spectroscopy *Introduction *Theory						
2.1.3- Scientific developments in the area of specialization.	A.2- Illustrate the recent scientific methodologies in the field of analytical chemistry.	a1	Classification of spectroscopic techniques NMR: *Principals *Vector Model *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance *Chemical shift *Local diamagnetic shielding *Spin-spin splitting Typical 1H NMR absorptions by type of compound Carbon – 13 spectra, including heteronuclear coupling with other nuclei Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction *Ionization methods *Mass analysis *Detection and Quantification MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS *Applications	Textbooks , Scientific papers and self learning	X	x	X	x	

				Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications Revision						
2.	2.2.3- Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.1- Integrate knowledge to suggest the suitable analytical method for pharmaceutical, environmental and biological samples.	b2	- Applications in lecture 4,6,8,11,12 and 13 - Revision	Textbooks , Scientific papers and self learning	X	х	х	х	
	2.2.2- Solve specified problems in the lack or missing of some information.	B.3- Solve the problems which obstacle to research plan and research results.	b1	Problems in lecture 2,4,6,8,9 and 12 - Revision	Textbooks , Scientific papers and self learning	X	X	х	х	
2.	2.4.4- Use variable sources to get information and knowledge.	D.3- Retrieve information from various sources in the field of analytical chemistry.	d1	- Activity	Textbooks , Scientific papers and self learning					х

2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.4- Work effectively as a member of team. D7- Demonstrate team leadership in different fields of the profession.	d2	- Activity			X
2.4.8- Continuous and self learning.	D.5- Study independently and plan research studies.	d3	- Activity			x

Faculty of Pharmacy

Thesis Specification

Thesis Specification of PhD Degree

A-Thesis specifications:

- **Program on which the course is given:** Ph.D of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- **Department offering the program:** Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval:

1- Basic information:

- Title: Ph.D Thesis in Analytical chemistry
- Credit hours: 30 hrs

2- Overall aim of the thesis:

On completion of the thesis, the students will be able to identify and perform advanced and accurate analytical techniques and methods used in the experimental work according to the designed protocol, critique own and other work, successfully write research articles for international publication, present his/her results in scientific meetings and conferences, derive and interpret the results of the study from the data collected, draw conclusions about the contribution to knowledge made by the study which may be concerned with the problem under investigation, the methods deployed or the student as a researcher.

3- Intended learning outcome's (ILOs):

Know	ledge and Understanding
	Outline theoretical and advanced bases of analytical chemistry
a1	related to main objectives of the thesis
	Determine the problem the thesis will handle in correlation with
a2	the community and surrounding environment
	Explain clearly the principles of different and advanced
a3	qualitative and quantitative analytical techniques
a4	Understand any legal aspects related to the thesis work.
	Demonstrate GLP and quality assurance related to practical work
a5	of the thesis
a6	Identify and apply scientific experimental ethics.
Intelle	ectual skills
	Solve problems related to practical work by obtained quantitative
b1	data from the practical work
	Discuss professional problems and suggest solutions rely on
b2	knowledge and recent information
b3	Plan a research in the research field
	Integrate scientific results and write report following conducting
b4	research
b 5	Manage risks and hazards related to professional practical area
	Outline principles that should be followed in research to develop
b6	laboratory performance
b7	Decide what to do with full responsibility in scientific research
1.0	Demonstrate creativity and innovation in modifying techniques
b8	and in utilization of various therapy.
Profes	ssional and practical skills

c1	Apply different techniques related to practical thesis work.
c2	Use and evaluate practical data to write report
c3	Use IT skills in collecting information, presenting results and writing thesis
c4	Improve laboratory techniques.
Gener	ral and Transferable skills
d1	Communicate effectively with all people related to the work.
d2	Use information technology in review and thesis preparation.
d3	Use various sources to get information about the subject understudy.
d4	Study independently and evaluate learning needs in analytical chemistry.
d 5	Use up-to-date information in analytical chemistry.
d6	Implement tasks as a member of a team.
d7	Utilize time effectively to achieve goals

4. Thesis Content:

steps	Content
1 st	Suggest the possible points/ problems of research that the candidate can work on in the frame of the aim of work and choose proper point related to the problems of the community and surrounding environment. Collect all available information about this subject by all possible
	means. Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.
	Design the protocol including the steps of work following the suitable timetable. Increase the awareness of the recent biochemical and analytical

	techniques that will be used during practical work and determined by the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.
	Continuous evaluation to the thesis outcome according to the schedule.
2 nd	Identify different practical techniques and methods to assess biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples
4 th	- Communicate with supervisors to discuss results
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).
	Present the results periodically in seminars.

Write scientific reports on the obtained results with conclusive significance.

Discuss obtained results in comparison with pervious literatures.

Suggest possible recommendations based on the outcome of the thesis and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and writing scientific papers.

5- Teaching and Learning Methods:

- Self learning (Activities, Research...)
- Research group meetings
- Departmental seminars
- Instrumental troubleshooting
- Investigation and problem solving

6- References:

Websites: Pubmed, Sciencedirect, Weilyinterscience

International Journals such as: J. Chromatography B, Drug Testing and Analysis, Analytical Chemistry.

Books:

- How to Write A Thesis, By Murray, Rowena, McGraw-Hill International, 3rd edition 2011.
- Authoring a PhD: How to Plan, Draft, Write and Finish a
 Doctoral Thesis or dissertation, By Patrick Dunleavy, 2003.

Facilities required:

For practical work: U.V spectrophotometer, Sonicator,
 Colorimeter, Flouremeter, HPLC-UV, Atomic Absorption
 Spectrometer, GC-FID

Head of Department: