Faculty of Pharmacy

Analytical Chemistry department Courses specifications

Zagazig University Faculty of Pharmacy Analytical Chemistry Department

Program and Course Specifications Master and Ph.D. Degrees

2017/2018

Analytical Chemistry Department

Programs and Courses specifications

Master Degree

Analytical Chemistry Department

Programs and Courses specifications

Program Specification

Program Specification

A-Basic Information

- 1- Program title: M. Pharm. Sci Degree in Analytical Chemistry
- 2- Program type: Single.
- 3- Faculty/ University: Faculty of Pharmacy, Zagazig University
- 4- Department: Analytical Chemistry
- 5- Coordinator: Prof. Dr. Hisham Ezzat
- 6- Date of program specification approval:

B- Professional Information

1- Program aims:

Analytical Chemistry master's program is a program aimed for the enhancement of skills of the chemists employed either in Industry or Research.

The broad objectives of the Program are:

- 1. To provide training in modern analytical techniques to the learners.
- 2. To provide appropriate theoretical background and develop practical skills for analyzing materials even in trace amounts using modern analytical methods and instruments.
- 3. To enable students acquire the analytical data and interpret using statistical principles.
- 4. To advance the experience of students in the area of good chemical laboratory techniques that will lead to a profound contribution in the pharmaceutical analytical chemistry as well as pharmaceutical industry.

5. To enable the students to conduct professionally and independently analysis of pharmaceutical compounds by different qualitative and quantitative methods.

The Analytical Chemistry master's program graduates can work in different profession fields such as Research & Development Laboratories, Educational and Research institutes, Analytical and Bioanalytical laboratories, Medical Centers, Hospitals, Universities, National Quality Control & assurance Centers, Pharmaceutical Industry and Ministry of Health. The Analytical Chemistry master's program is useful for all those Pharmacy Graduates who are aspiring to get employment in these labs.

Graduate Attributes:

Master's program graduates should acquire the required attributes & skills in various Pharmaceutical Analytical and bioanalytical Chemistry features including the following:

- 1. Have the basic knowledge for practice of analytical and bioanalytical chemistry.
- 2. Apply the fundamental and advanced professional skills for appropriate applications in the field of pharmaceutical industry and pharmaceutical products development.
- 3. Use modern analytical techniques and improve method development skills.
- 4. Analysis data, evaluate information, solve practiced problems and develop troubleshooting skills.
- 5. Conduct research, construct experimental plans and write scientific reports.

6. Appreciate scientific integrity and ethical principles for professional practice in the area of expertise.

7. Improve continuous and self learning abilities.

8. Cooperate and work effectively with other team members.

2-Intended Learning Outcomes (ILOs):

The Program provides excellent opportunities for students to demonstrate knowledge and understanding qualities and develop skills appropriate for **Analytical chemistry** Master of sciences degree.

2-1- Knowledge and Understanding:

On successful completion of the Master degree Program, students will be able to:

A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.

A.2- Recognize good practice principles and environmental samples analysis.

A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment.

A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications.

A.5- Outline principles of drug design and development.

A.6- Figure out drug stability features and kinetics chemistry.

A.7- Comprehend the ethical issues related to drug analysis and conduct research.

A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.

A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques.

2-2 - Intellectual Skills:

On successful completion of the Master degree Program, students will be able to:

B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.

B.2- Suggest the most appropriate analytical technique for analyzing the pharmaceutical or biological samples.

B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.

B.4- Write concrete reports on the obtained results with conclusive significances.

B.5-Recognize possible hazards during work and how to deal with.

B.6- Propose laboratory safety and proper use of analytical instruments.

B.7- Design a laboratory protocol for a requested analytical issue.

B.8-Assess problems encountered during analytical assay and make professional decisions.

2-3 – **Professional and practical Skills:**

It is intended that, on successful completion of the Master degree Program, students will be able to:

C.1- Recognize with personal command the recent laboratory techniques and advanced analytical procedures.

C.2- Write with confidence reliable scientific reports.

C.3- Develop and assess novel methods of analysis.

C.4- Develop advantageous analytical method over the existing traditional techniques.

2-4 - General and Transferable Skills:

On successful completion of the Master degree Program, students will be able to:

D.1- Interact effectively with patients, researchers and professionals.

D.2- Acquire computer skills such as internet, word processing,

chemometric and kinetic softwares.

D.3- Practice self assessment and continues working in the field of pharmaceutical analysis and drug stability.

D.4- Retrieve information from various sources required for drug analysis and drug design.

D.5- Set rules for judging others chemists performance in the team.

D.6- Work effectively as a team member.

D.7- Acquire team leader skills for the future work.

D.8- Handle working hours appropriately.

D.9- Study independently and plan research studies.

3- Academic Standards:

• ARS (National Academic Reference Standards)

Matrix: Comparison between Master degree program ILOs and the

Academic Reference Standards

	ARS	Program ILOs
d Understanding	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.
Knowledge an	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Recognize good practice principles and environmental samples analysis.A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment.

	2.1.3- Scientific developments in the area of specialization.	A.4- Describe the most advancedInstrumental techniques in analyticalchemistry and their applications.A.5- Understand principles of drugdesign and development.A.6- Figure out drug stability featuresand kinetics chemistry.
	2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.7- Comprehend the ethical issues related to drug analysis and conduct research.
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.
	2.1.6- The fundamentals and ethics of scientific research.	A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques.
	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.
	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for analyzing the pharmaceutical or biological samples.
Intellectual Skills	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.
	2.2.4- Conduct research and write scientific report on research specified topics.	B.4- Write concrete reports on the obtained results with conclusive significances.
	2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.5-Recognize possible hazards during work and how to deal with.B.6- Propose laboratory safety and proper use of analytical instruments.

		2.2.6- Plan to improve performance in the field of specialization.	B.7- Design a laboratory protocol for a requested analytical issue.						
		2.2.7- Professional decision-making in the contexts of diverse disciplines.	B.8-Assess problems encountered during analytical assay and make professional decisions.						
Practical		2.3.1- Master basic and modern professional skills in the area of specialization.	C.1- Recognize with personal command the recent laboratory techniques and advanced analytical procedures.						
	and cills	2.3.2- Write and evaluate professional reports.	C.2- Write with confidence reliable scientific reports.						
Professional Sk	Professional Sł	2.3.3- Assess methods and tools existing in the area of specialization.	C.3- Develop and assess novel methods of analysis.C.4- Develop advantageous analytical method over the existing traditional techniques.						
		2.4.1- Communicate effectively.	D.1- Interact effectively with patients, researchers and professionals.						
		2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.						
	able Skills	2.4.3- Self-assessment and define his personal learning needs.	D.3- Practice self assessment and continues working in the field of pharmaceutical analysis and drug stability.						
	Fransfer	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources required for drug analysis and drug design.						
	al and Tı	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others chemists performance in the team.						
	Genei	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member.D.7- Acquire team leader skills for the future work.						
		2.4.7- Manage time effectively.	D.8- Handle working hours appropriately.						
		2.4.8- Continuous and self learning.	D.9- Study independently and plan research studies.						

4-Curriculum Structure and Contents:

Program duration: 3- 5 years

Program structure:

- The Masters program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

1- Courses: General (1 year) and Special

No. of credit hours for program courses:

Compulsory: 12 Elective: (2x4) 8 Special: (3x4) 12

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic in the Pharmaceutical Sciences. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

3- General University Requirements: 10 credit hours including:

a- TOEFL (400 units)

b- Computer course

c-Program Curriculum:

Course Code	Course Title	Credit hours	Program ILOs Covered					
	General Courses:							
M109	Drug design	4	A5, D2,D4					
	Advanced	1	A1 A2 B1 D4					
M101	Instrumental Analysis	+	A1, A2, D1,D4					

Analytical Chemistry Department

Faculty of Pharmacy

	& chromatography I						
M106	Physical chemistry	4	A1, A4, A6, B1, B3, D2, D5, D6				
	Elective A						
	Good practice for	4	A2.A8.D6				
ME3	analysis of drugs and		· · - , · · · · · · · · · · · · · · · · · · ·				
	quality control						
	Elective B	4	A6 D6				
ME2	Drug Stability	T	110,20				
	Special Courses:						
	Potentiometry,		A1 A3 B7 B8				
Asp1	voltammetry and	4	D^{2} D5 D6 D7				
	electrochemical sensors		<i>D</i> 2, <i>D</i> 3, <i>D</i> 0, <i>D</i> 7.				
	Kinetic methods of		A1, A2, A6, A8,				
Asp2	analysis	4	A9, B1, B2, D4,				
	anarysis		D5, D9.				
	<u> </u>		A1, A3, B7, D4,				
Asp3	Spectrophotometry	4	D5, D6, D7.				
			A1, A3, A4, A7,				
			A8, A9, B1, B2,				
			B3, B4, B5, B6,				
	Thesis	30	B7, B8, C1, C2,				
			C3, C4, D1, D2,				
			D3, D4, D5, D6,				
			D7 ,D8, D9.				

5-Program admission requirements:

General Admission Conditions

- The Applicant should finish or being permanently or temporarily exempted from the military service and temporary exemption should be valid for at least one year from the date of beginning of study. (Exceptions apply for demonstrators and assistant lecturers).
- The applicant admission to the M.Sc. program should be no later than ten years from the time of graduation.
- Acquisition of an approval from the Faculty Council following an approval of concerned Departmental Board as well as Graduate Studies and Research Committee recommendation within a maximum of one month for any conditions stated by the concerned Departmental Board.

Admission Conditions for M.Sc. degree

In addition to the general admission conditions stated before, applicants are admitted to M.Sc. degree upon fulfillment of the following:

The applicants should be holders of Bachelor in Pharmaceutical Sciences from any Faculty of Pharmacy with a general grade at least good affiliated to the Egyptian Universities or an equivalent degree granted by any institute recognized by the Supreme Council of Universities.

The Faculty council is allowed, on consent of the concerned Departmental Board as well as Graduate Studies and Research Committee, to accept student for registration of M.Sc. degree if he has got a diploma from one of the Egyptian Universities in one of the pharmaceutical sciences fields, Faculties, or Institutes that are

recognized by the Supreme Council of Universities with a general grade of Good regardless his grades in bachelor degree.

Students should fulfill all the admission requirements stated by the concerned Departmental Board (ICDL certificate, local TOEFL certificate with a grade at least 450).

Admission has to be done within the period announced by the university.

Candidate thesis discussion isn't before one calendar year from research point registration.

Regulations to complete the program:

Conditions of granting the degree

The Faculty Council, in compliance with the concerned Departmental Board as well as Graduate Studies and Research Committee recommendation awards the M.Sc. degree upon fulfillment of the following requirements:

- Carrying out a deep research in the area of specialization for at least one or two calendar years and at most three years from the time of registration.
- The student has to succeed in all courses examinations.
- Acceptance of the research thesis by the Jury Committee according to statement 104 of universities regulating law.

Cancellation of Registration

The Faculty Board is allowed to cancel registration for M. Sc. programs in the following circumstances

- Student's failure to pass course examinations for two times.
- Student's nonattendance or unsatisfactory progress (at least two annual reports) in research work being reported by the advisors and chief supervisor to the Departmental Board and

Programs and Courses specifications

forwarded to the Graduate Studies and Research Committee recommendation for approval of cancellation.

- Dissertation refusal by the Jury Committee.
- Incapability of student to graduate by the deadlines indicated.

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS
Written exam	Knowledge and Understanding and Intellectual Skills
Oral exam	Knowledge and Understanding ,Intellectual Skills and
	General and Transferable Skills
Activity	Intellectual Skills and General and Transferable Skills
Seminars	Knowledge and Understanding ,Intellectual Skills &
	General and Transferable Skills
Follow up	Professional and practical Skills & General and
	Transferable Skills
Thesis and	Knowledge and Understanding, Intellectual Skills,
oral	Professional and practical Skills & General and
presentation	Transferable Skills

Grade Scale	Grade point average value (GPA)	Numerical scale
A+	5	≥ 95%
А	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%

8-Failure in Courses:

Students who fail to get 60% (1 point)

9-Methods of program evaluation

Evaluator	Method	Sample
Internal evaluator:	Program evaluation	Program report
Prof. Dr. Hesham Ezzat	Courses evaluation	Courses report
External evaluator:	Program evaluation	Program report
Prof. Dr. Gamal Saleh	Courses evaluation	Courses report
Others methods	Matrix with ARS	The Matrix
	Questionnaires	Results of the
		questionnaires

Program coordinator

Head of Department

Prof. Dr. Hisham Ezzat

Prof. Dr. Magda El-Henawy

تم اعتماد توصيف البرنامج في مجلس القسم بتاريخ 10 / 2017

Courses specifications

	Masters of Analytical chemistry																															
												Program intended learning outcomes																				
1	Program Courses	Knowledge and understanding									Intellectual skills									Professional and practical skills				General and transferable skills								
		A1	A2	A3	A4	A5	A6	A7	A8	A9	B1	B2	B3	B4	B5	B6	B7	B8	C1	C2	C3	C4	D1	D2	D3	D4	D5	D6	D7	D8	D9	
	Drug design					x																		x		x						
ourses	Advanced Inst. Anal.& Chromatography	x	x								x															x						
eral co	Physical chemistry	x			x		x				x		x											x				x				
Gen	Good practice and quality control		x						x																			x				
	Drug stability						x																					x				
ourses	Potentiometry, voltametry& electrochemical sensors	x		x													x	x						x			x	x	x			
ecial c	Kinetic methods of analysis	x	x				x		x	х	x	x														x	x				x	
Sp	Spectrophotometry	x		x													x									x	x				x	
Thesis		x		x	x			x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	

Courses specifications

Physical Chemistry

Programs and Courses specifications

Course specification of Physical Chemistry

A-Course specifications:

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course:
- Analytical Chemistry.
- Date of specification approval:

1- Basic information:

Title: Physical Chemistry	Code: M106
Lectures: 4 hrs/week	Credit hours: 4 hrs/week
Total: 4 hrs/week	

<u>2- Overall aim of the course:</u>

On completion of the course, the students should be able to outline the principles of kinetics, catalysis, solutions and photochemistry and describe theories of reaction rate, types of chemical reaction criteria of catalysis.

3. Intended learning outcomes (ILOs) of Physical Chemistry:

A- K	nowledge and Understanding
91	Outline the principles of kinetics, catalysis, solutions and
aı	photochemistry
	Demonstrate the behavior and laws governing, photochemistry,
a2	solutions and chemical reactions and their applications.
B- In	tellectual skills
h	Describe units of measurements and calculations with chemical
D 1	formulas and equations.
h	Integrate the knowledge and information obtained from physical
D ₂	chemistry principles in determining rates of the reaction.
D-G	eneral and Transferable skills
d	Acquire Computer skills like preparing presentations and
u ₁	collecting information through different data-bases.
d ₂	Work effectively as a member of team
d ₃	Improve scientific brain storming capabilities of team members

4. Course Contents of Physical Chemistry:

Week number	Contents
1	• Introduction of kinetics and rate of reactions
2	• Molecular and order of reaction.
3	• Parallel and consecutive reactions.
4	• Methods used for determination of the order of reactions
5	• Theories of reaction rates and chain reaction
6	Criteria of catalysis.
7	Homogenous and enzyme catalysis
8	Heterogeneous catalysis

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

9	• Nature of electrolytes in solution.
10	Photochemistry and properties of electromagnetic
	radiations.
11	• Laws of photochemical process, quantum yield and
	chain reaction.
12	• Solutions:
	• Principles and concentration and solubility.
13	• Factors affecting solubility
	• Solute-solvent interaction.
	• Solubility and temperature.
	• Effect of pressure on solubility.
14	Solutions of liquids in liquids
	• Solutions of solid in liquids (Colligative properties of
	solutions.)
15	Open discussion and revision

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Internet based search

6- Student Assessment methods :

Written exams to assess:	a1, a2, b1 and b2
Oral exam to assess:	a1, a2, b1 and b2
Activity to assess:	d1, d2 and d3

Assessment schedule:

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

- Principles of Physical Chemistry (Part 1-2) by Lion el M. Raff, Prentice Hall; 1st edition (2001).
- Physical chemistry of surfaces, Arthur Ademson, John Wiley & Sons.inc:1st edition (2000).

D- Websites/Journal:

- Analytical Chemistry
- www.sciencedirect.com
- www.rsc.org

Facilities required for teaching and learning:

- 1. For lectures: Black (white) boards, computer, data show.
- Course Coordinator: Prof Dr/ Wafaa Hassan

Prof Dr/ Mervat Hosny

• Head of Department: Prof. Dr. Magda El Henawee

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 2017 / 10

	Matrix I of	Physic	cal Ch	emist	ry			
				IL	,Os			
	Course Contents	Knov	vledge nd	Intelle	ectual	Gei Tra	neral a nsferal	nd ble
		unders	tanding	ski	lls		skills	
	a Introduction of	a1	a2	b1	b2	d_1	d ₂	d ₃
1	kinetics and rate of	Х						
	reactions							
2	• Molecular and order			v				
2	of reaction.			Α				
	• Parallel and							
3	consecutive			x	x			
	reactions.							
	• Methods used for							
4	determination of the	X						
	order of reactions							
	• Theories of reaction							
5	rates and chain		Х					
	reaction							
6	• Criteria of catalysis.		X					
_	Homogenous and							
7	enzyme catalysis	X						
-	• Heterogeneous					X	X	X
8	catalysis	X						
	• Nature of electrolytes							
9	in solution.	X						
	• Photochemistry and							
10	properties of							
10	electromagnetic		X					
	radiations.							

Analytical Chemistry Department

Faculty of Pharmacy

11	•	Laws of photochemical process, quantum yield and chain reaction.		X				
12	•	Solutions: Principles and concentration and solubility.		X				
13	•	Factors affecting solubility Solute-solvent interaction. Solubility and temperature. Effect of pressure on solubility.		X				
14	•	Solutions of liquids in liquids Solutions of solid in liquids (Colligative properties of solutions.)		X				
15	•	Open discussion and revision	X			X	X	x

Courses specifications

				Matrix II of Physical Che	emistry					
	ARS	Program ILOs	Course ILOs	Course contents	Sources	Teach lear met	ing and rning hods	Metho	d of ass	essment
						Lecture	Self learning	Written exam	Oral Exam	Activity
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.	al	 Introduction of kinetics and rate of reactions. Methods used for determination of the order of reactions Homogenous and enzyme catalysis Heterogeneous catalysis Nature of electrolytes in solution. 	Textbooks, Scientific	x	X	X	x	
	2.1.3- Scientific developments in the area of specialization.	 A.4- Describe the most advanced Instrumental techniques in analytical chemistry and their applications. A.6- Figure out drug stability features and kinetics chemistry. 	a2	 Theories of reaction rates and chain reaction Criteria of catalysis. Photochemistry and properties of electromagnetic radiations. Laws of photochemical process, quantum yield and chain reaction. Solutions: Principles and 	self learning					

Analytical Chemistry Department

Faculty of Pharmacy

				concentration and						
				solubility. Factors affecting						
				solubility						
				• Solute-solvent interaction.						
				• Solubility and temperature.						
				 Effect of pressure on solubility. Solutions of liquids in liquids Solutions of solid in liquids (Colligative properties of solutions.) 						
2	2.2.1- Analyze									
8	and evaluate	B.1- Analyze and interpret								
i	information in	both quantitative and		Units of measurements and dimensional	Textbooks,					
ť	the field of	qualitative data obtained	b1	analysisCalculations with chemical	Scientific		v		_	
s	specialization	from analytical chemistry	01	formulas and equations	papers and	Х	А	Х	Х	
٤	and analogies	research in a specific and		formulas and equations.	self learning					
t	to solve	suitable form.								
2.2	problems									
	2.2.3- Correlate and integrate different pharmaceutica l knowledge to solve professional	B.3- Integrate the gained knowledge of analytical chemistry, for analysis analytes of complex nature.	b2	Calculations with chemical formulas and equations.	Textbooks, Scientific papers and self learning	X	x	X	x	

Analytical Chemistry Department

Faculty of Pharmacy

	2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity			X
2.4	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member.	d2	Activity			X
	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others chemists performance in the team.	d3	Activity			x

Analytical Chemistry department

Programs and Courses specifications

Courses offered by other departments

Analytical Chemistry Department

Programs and Courses specifications

Drug Design

Programs and Courses specifications

Course specification of Drug Design

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Medicinal chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Drug Design

Lectures: 4 hrs/week Total: 4 hrs/week Code: M109 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to

- outline principles of drug design, docking
- utilize combinatorial chemistry in synthesis of drugs.

Programs and Courses specifications

<u>3. Intended learning outcome s (ILOs) of Drug Design</u>

Know	vledge and Understanding
a1	Outline principles of drug design and combinatorial chemistry.
a2	Describe applications of drug design and QSAR.
a3	Illustrate clearly the up-to date information & methods in drug design and docking.
Intell	ectual skills
b1	Solve or propose solutions to specified problems in drug design
Gene	ral and Transferable skills
d1	Write reports and present it.

<u>4. Course Content of Drug Design</u>

Week number	Lecture contents (4hrs/week)
1	Principles of drug design
2	Combinatorial chemistry (combinatorial and
	parallel synthesis in medicinal chemistry
	projects)
3	Combinatorial chemistry (solid phase
	techniques)
4	QSAR (hydrophobicity, electronic effects)
5	QSAR(steric factors, other physicochemical
	parameters)
6	Activity(Reports)
6 7	Activity(Reports)Drug design and relationship of functional groups
6 7	Activity(Reports)Drug design and relationship of functional groupsto biological activity (hydrophilic/ hydrophobic
6 7	Activity(Reports)Drug design and relationship of functional groupsto biological activity (hydrophilic/ hydrophobicproperties)
6 7 8	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups
6 7 8	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups to biological activity (resistance to chemical and
6 7 8	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)
6 7 8 9	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)Relationship between molecular structure and
6 7 8 9	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)Relationship between molecular structure and biological activity
6 7 8 9 10	Activity(Reports)Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)Relationship between molecular structure and biological activityDocking (Introduction)

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

12	Activity(Reports)
13	Applications of drug design (self destruct drugs, peptidomimetics)
14	Applications of drug design (targeting drugs)
15	Revision & Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussions

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1,a2,a3&b1
Oral exams to asses:	a1,a2,a3&b1
Activities to asses:	d1

Assessment schedule:

Assessment (1): Activity	Week 6-12
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

Programs and Courses specifications

7- References and books:

A-Scientific papers

B- Essential books:

i- Burger's medicinal chemistry and drug discovery

Edited by Manfred E.wolff(2006)

ii- Computer-aided molecular design

Application of Agrochemicals, Materials & pharmaceuticals

Edited by Charles H.Reynolds, M.Katharine Holloway and Harold

K.COX(2003)

C- Suggested books:

i- The organic chemistry of drug design and drug action, second

edition, Edited by Richard B.Silverman.(2005)

ii- Designing Bioactive molecules

Three dimensional Techniques and applications, Edited by Yvonne

C.Martin and Peter Willett. (2009)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, computers and data show.

Course Coordinators:

- Head of Department:
- Date

تم اعتماد التوصيف بالقسم بتاريخ

Matrix I of Drug Design								
		ILOs of Drug Design course						
Course Contents			nowle and erstai	edge nding	Intellectual skills	General and Transferable skills		
		a1	a2	a3	b1	d1		
1	Principles of drug design	Х						
2	Combinatorial chemistry (combinatorial and parallel synthesis in medicinal chemistry projects)	x						
3	Combinatorial chemistry (solid phase techniques)	x						
4	QSAR (hydrophobicity, electronic effects)		х					
5	QSAR(steric factors, other physicochemical parameters)		x					
6	Activity(Reports)					Х		
7	Drug design and relationship of functional groups to biological activity (hydrophilic/ hydrophobic properties)		X	Х				
8	Drug design and relationship of functional groups to biological activity (resistance to chemical and enzymatic degradation)		x	х				
9	Relationship between molecular structure and biological activity		X	x				
10	Docking (Introduction)			х				
11	Docking (procedures)			х				
12	Activity(Reports)					Х		
13	Applications of drug design (self destruct drugs, peptidomimetics)				X			
14	Applications of drug design (targeting drugs)				X			
15	Revision & Open Discussion	х	х	х	X	X		

	Matrix II of Drug Design									
ARS		Program ILOs	Course ILOs	Course contents	Sources	Teaching and learning methods		Methods of assessment		
						Lecture	Self learning	Written exam	Oral exam	Activities
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Outline principles of drug design, docking and combinatorial chemistry.	al	Principles of drug design. Combinatorial chemistry	Textbooks, Scientific papers and self learning	x	Х	x	x	
	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.3- Describe applications of drug design and QSAR	a2	QSAR Drug design and relationship of functional groups to biological activity. Relatioship between molecular structure and biological activity.	Textbooks, Scientific papers and self learning	x	Х	x	x	
	2.1.3- Scientific developments in the area of specialization.	A.5- Record the recent advances in the field of instrumental analysis, CADD, and advanced medicinal chemistry.	a3	Drug design and relationship of functional groups to biological activity. Relationship between molecular structure and biological activity. Docking Activity	Textbooks, Scientific papers and self learning	x	x	x	x	

Analytical Chemistry Department

Faculty of Pharmacy

2.2	2.2.3-Correlate and integrate different pharmaceutical knowledge to solve professional problems.	B.3- Apply learnt knowledge to solve professional problems associated with drug design and synthesis.	b1	Applications of drug design.	Textbooks, Scientific papers and self learning	x	x	x	X	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Find information from a range of sources in the field of Drug synthesis and analysis and recent topics in medicinal chemistry.	d1	Activity (Reports)	Internet Textbooks		x			x
Medicinal Chemistry department Programs and Courses specifications

Advanced Instrumental Analysis & chromatography I

Course specification of Advanced Instrumental Analysis & chromatography I

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Medicinal chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Advanced Instrumental Analysis & chromatography I

Code: M101Lectures: 4 hrs/weekTotal: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to

- demonstrate fundamental knowledge and basic theories in instrumental analysis
- state the concepts of diagnosing cardiac diseases, G.I.T diseases and infections through IR, HNMR and UV spectrophotometry
- describe new aspects of (HPLC), HPLC/Mass, Gas Chromatography (GC) and GC/Mass and their medicinal applications.

3. Intended learning outcomes (ILOs) of Advanced

Instrumental Analysis & chromatography I

Know	vledge and Understanding
	Illustrate theories for separation of different components in
a1	combined therapy and their determination quantitatively using
	different instrumental techniques.
	State medicinal and pharmaceutical applications of spectroscopy
a2	, HPLC and GC
Intell	ectual skills
h1	Analyze & interpret qualitative & quantitative data obtained from
DI	instrumental analysis
Gene	ral and Transferable skills
d1	Write reports and present it.

4. Course Content of Advanced Instrumental Analysis & chromatography I:

Week number	Lecture contents (4hrs/week)
1	Advanced Ultra-violet spectroscopy
2	New aspects in vibrational spectroscopy (IR spectroscopy)
3	Application of Nuclear magnetic resonance (NMR)
4	Application of Mass spectrometry(MS)
5	Medicinal application of spectroscopy in diagnosis of diseases
6	Raman spectroscopy.
7	Advanced HPLC.Activity (Reports)

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

8	HPLC & its medicinal and pharmaceutical application
9	High performance thin layer chromatography (HPTLC).
10	Advanced Gas chromatography.
11	GC & its medicinal and pharmaceutical application
12	New aspects of Supercritical fluid chromatography(SFC) and ion exchange chromatography (IEC).
13	Capillary electrophoresis(CE)
14	Analytical application of dimeric and polymericmolecules.Activity (Reports)
15	Revision & open discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1,a2&b1
Oral exams to assess:	a1,a2&b1
Activities to asses:	b1&d1

Assessment schedule:

Assessment (1): Activity	Week 7-14
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Programs and Courses specifications

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

-Chemical stability of pharmaceuticals, Kenneth A. Connors, Kenneth Antonio Connors, Gordon L. Amidon, Valentino J. Stella

-Pharmaceutical process validation Robert A. Nash, Alfred H. Wachter (2006)

C- Suggested books:

-Photostability of drugs and drug formulations, Hanne Hjorth Tønnesen (2004)

-U.S.P. & B.P (2010)

D- Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, computer and data show.

Head of Department:

تم اعتماد التوصيف بمجلس القسم بتاريخ Date:

Matrix I of Advanced Instrumental Analysis & chromatography I							
		ILOs of &	Advanc chroma	ed Instrume atography I	ental Analysis course		
	Course Contents	Knowled understa	ge and nding	Intellectual General and Skills skills			
		al	a2	b1	d1		
1	Advanced Ultra-violet spectroscopy	x	Х	Х			
2	New aspects of Vibrational spectroscopy (IR spectroscopy)	Х	x	X			
3	Application of Nuclear magnetic resonance (NMR)	x	x	X			
4	Application of Mass spectrometry(MS)	X	X	X			
5	Medicinal application of spectroscopy in diagnosis of diseases		x	X			
6	Raman spectroscopy.	X					
7	Advanced HPLC. Activity (Reports)	x		X	Х		
8	HPLC & its medicinal and pharmaceutical application		x				
9	High performance thin layer chromatography (HPTLC)	x		X			
10	Advanced Gas chromatography	Х					
11	GC & its medicinal and pharmaceutical application		x	X			
12	New aspects of Supercritical fluid chromatography (SFC) and ion exchange chromatography (IEC)	X	x				
13	Capillary electrophoresis(CE)	X	x				
14	Analytical application of dimeric and polymeric molecules. Activity (Reports)		X	X	X		
15	Revision and open discussion	X	x	X			

	Matrix II of Advanced Instrumental Analysis & chromatography I									
ARS		Program	Course IL Os	Course contents	Sources	Teaching and learning methods		Method of assessment		
		11.05	1205			Lecture	Self learning	Written exam	Oral exam	Activities
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.2- Illustrate theories of Qualitative and Quantitative estimation of different formulations	al	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Raman spectroscopy Advanced HPLC High performance liguid chromatography HPTLC Advanced Gas chromatography New aspects of Supercritical fluid chromatography (SFC) Capillary electrophoresis(CE)	Textbooks, Scientific papers and self learning	Х	X	Х	x	

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.4- Demonstrate applications of Quality control and Quality assurance that serves the community and patients.	a2	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Medicinal application of spectroscopy in diagnosis of diseases Advanced HPLC & its medicinal and pharmaceutical application Advanced GC & its medicinal and pharmaceutical application New aspects of Supercritical fluid chromatography (SFC) Capillary electrophoresis(CE) Analytical application of dimeric and polymeric molecules.	Textbooks, Scientific papers and self learning	Х	X	X	Х	
--	---	--	----	--	--	---	---	---	---	--

Analytical Chemistry Department

Faculty of Pharmacy

2.2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret data obtained from Instrumental analysis of different drugs in a specific and suitable form.	b1	Advanced Ultra-violet spectroscopy New aspects of Vibrational spectroscopy (IR spectroscopy) Application of Nuclear magnetic resonance (NMR) Application of Mass spectrometry(MS) Medicinal application of spectroscopy in diagnosis of diseases Advanced HPLC & its medicinal and pharmaceutical application Advanced GC & its medicinal and pharmaceutical application	Textbooks, Scientific papers and self learning	Х	X	Х	х	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Find information from a range of sources in the field of Drug synthesis and analysis and recent topics in medicinal chemistry.	d1	Activity (Reports)	Internet Textbooks		X			X

Medicinal Chemistry department

Programs and Courses specifications

Good practice for analysis of drugs and quality control

Course specification of Good practice for analysis of drugs and quality control

Course specifications:

- Program on which the course is given: Master of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Medicinal chemistry Dept.
- Department offering the course: Medicinal chemistry Dept.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Quality in Instrumental Analysis and Quality Control

Code: ME3 Lectures: 4 hrs/week Credit hours: 4 hrs/week Total: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to:

- choose & develop suitable analytical methodology
- analyze and find an effective solution for a given complex problem.

<u>3. Intended learning outcome s (ILOs) of Good practice</u> <u>for analysis of drugs and quality control</u>

Knov	vledge and Understanding
a1	Outline the new aspects in drug analysis & quality control
a2	Express up-to-date information in the field of drug analysis
a3	Illustrate the applications of quality control & quality assurance
Intell	ectual skills
h1	Analyze & evaluate obtained results qualitatively &
01	quantitatively
b2	Evaluate GMP to avoid any hazards
Gene	ral and Transferable Skills
d1	Improve professional abilities by evaluation of information from
uI	different sources.
d2	Write reports and present it.

<u>4. Course Content :</u>

Week number	Lecture contents (4hrs/week)
1	Validation parameters in analysis
2	Application of quantitative analysis for different
	drugs.
3	Quality control and how to minimize the
	synthesis errors.
4	Quality assurance and basic requirement.
5	Applications of Spectrophotometric analysis for
	dosage forms
	Activity
6	$H^{1}, C^{13}, N^{15}, F^{19}$ - NMR
7	Advanced techniques in mass spectroscopy
8	Atomic absorption
9	Fluorimetric analysis

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

10	Radioimmune Assay
11	Electrophoresis
12	Advanced GC-MS chemistry
	Activity
13	Spectrodenistometric (TLC scanner)
14	Forensic chemistry
15	Revision & Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3,b1,b2,d1&d2
Oral exams to assess:	a1, a2, a3,b1,b2,d1&d2
Activities to assess:	d1&d2

Assessment schedule:

Assessment (1): Activity	Week 5-12
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Halpern,A in "Experimental physical chemistry"(2007) Oxtoby,D and Nachtrieb, N in "Principles of Modern chemistry"(2009) **C- Suggested books:** Garfied, F. M., Klesta ,E and Hirsch, J in" Quality Assurance Principles for Analytical Laboratories"(2011)

D-Websites:

http://www.ncbi.nlm.nih.gov/sites/entrez

http://journals.tubitak.gov.tr/chem/index.php

http://www.pharmacopoeia.co.uk/

www.Pubmed.Com

www.sciencedirect.com

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators:
- Head of Department
- Date

تم اعتماد توصيف المقرر بمجلس القسم بتاريخ

Faculty of Pharmacy

Programs and Courses specifications

Matrix I of Good practice for analysis of drugs and quality control

Course Contents			ILOs of Quality in Instrumental Analysis and Quality Control course									
			nowle and lersta	edge nding	Intell sk	lectual tills	General and Transferable skills					
		a1	a2	a 3	b1	b 2	d1	d 2				
1	Validation parameters in analysis	х		х								
	Application of quantitative analysis											
2	for different drugs.	x	х	х								
	Quality control and how to minimize											
3	the systemic errors.	x		x	х							
	Quality assurance and basic											
4	requirements of GMP	x		х								
	Application of Spectrophotometric						Х	Х				
5	analysis(UV-VIS-IR)											
	Activity		х		х	x						
6	$H^{1}, C^{13}, N^{15}, F^{19}$ - NMR	x	х			х						
	Advanced techniques in mass											
7	spectroscopy		х			x						
8	Atomic absorption			х		Х						
9	Fluorimetric analysis		х			Х						
10	Radioimmune Assay		х									
11	Electrophoresis		х									
	Advanced GS-MS chemistry.						Х	X				
12	Activity	x		х								
13	Spectrodenistometric (TLC scanner)	x		x	Х							
14	Forensic chemistry.	x	x									

Matrix II of Good practice for analysis of drugs and quality control										
ARS		Program	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
		1205	iLOS			Lecture	Self learning	Written exam	Oral exam	Activities
	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.2- Illustrate theories of Qualitative and Quantitative estimation of different formulations.	al	Validation parameters in analysis Application of quantitative analysis for different drugs H ¹ ,C ¹³ ,N ¹⁵ ,F ¹⁹ - NMR Forensic chemistry Spectrodenistometric (TLC scanner) Advanced GC-MS Techniques	Textbooks, Scientific papers and self learning	X	x	X	X	
2.1	2.1.3- Scientific development s in the area of specialization	A.5- Record the recent advances in the field of Instrumental analysis, CADD, and advanced medicinal chemistry	a2	Application of quantitative analysis for different drugs Applications of Spectrophotometric analysis for dosage forms H1,C13,N15,F19 NMR Advanced techniques in mass spectroscopy Fluorimetric analysis Radioimmune Assay Electrophoresis Forensic chemistry	Textbooks, Scientific papers and self learning	X	X	X	Х	

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.5- Principles and the basics of quality in professional practice in the area of specializatio n.	A.7- Identify the principles to ensure quality and Validation of analysis results.	a3	Spectrodenistometric (TLC scanner) Atomic absorption GC-MS Techniques Validation parameters in analysis Application of quantitative analysis Quality control and how to minimize systemic errors. Quality assurance and basic requirements of GMP	Textbooks, Scientific papers and self learning	Х	Х	Х	Х	
	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret data obtained from Instrumental analysis of different drugs in a specific and suitable form.	b1	Quality control and how to minimize systemic error Applications of Spectrophotometric analysis for dosage forms Spectrodenistometric (TLC scanner)	Textbooks, Scientific papers and self learning	Х	Х	Х	Х	
2.2	2.2.5- Evaluate and manage risks and potential hazards in professional practices in the area of specialization	B.6-Evaluate risks in experiments and techniques used during handling chemicals and deal with them effectively.	b2	ApplicationsofSpectrophotometric analysisfor dosage formsAdvanced techniques inmass spectroscopyAtomic absorptionFluorimetric analysis $H^1, C^{13}, N^{15}, F^{19}$ - NMR	Textbooks, Scientific papers and self learning	Х	X	Х	X	

Analytical Chemistry Department

Faculty of Pharmacy

2.4	2.4.2- Effectivel y use informatio n technolog y in profession al practices	D.2- Demonstrate appropriate information technology skills especially in the areas of word processing, internet communication , information retrieval and online literature searching	d1	Activity (Reports)	Internet Textbooks	X		x
	2.4.4- Use variable sources to get information and knowledge.	D.4- Find information from a range of sources in the field of Drug synthesis and analysis and recent topics in medicinal chemistry.	d2	Activity (Reports)	Internet Textbooks	X		X

Analytical Chemistry Department

Programs and Courses specifications

Drug Stability

Programs and Courses specifications

Course specification of Drug stability

Course specifications:

- **Program on which the course is given:** Master of Pharmaceutical Sciences
- Major or Minor element of program:
- Department offering the program:
- Department offering the course:

Pharmaceutics Dept. Pharmaceutics Dept.

Major

• Date of specification approval:

<u>1- Basic information:</u>

Title: **Drug stability** Lectures: 4 hrs/week Total: 4 hrs/week Code: Esp2 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to describe the degradation of drugs and the methods to determine the order of reaction, illustrate the stability programs for pharmaceutical products and the latest regulations for stability testing and ability to predict the degradation pathways of a drug design a stabilization protocol and predict a product shelf-life and discuss regulations and methodologies for drug stability program.

Programs and Courses specifications

<u>3- Int</u>	<u>3- Intended learning outcome s (ILOs) of Drug stability:</u>					
Know	ledge and Understanding					
a1	Illustrate the principles drug stability					
a2	Describe the regulations for drug stability program					
a3	Describe the methodologies for drug stability program					
Intelle	ectual skills					
h1	Suggest suitable stability methods for drugs in the various					
DI	dosage forms.					
Ь 2	Design in a self-directed and original research investigations on					
04	drug stability in dosage forms from degradation pathways					
General and Transferable skills						
d1	Use computer skills to present information					
d2	Collect information from a variety of sources					

<u>4. Course Content of Drug stability (Master degree):</u>

Week	Lecture content (4 hr/w)
number	
1	• Drug stability (Overview – importance)
2	• Stability regulations (overview)
3	 Critical regulatory requirements for a stability program
4	Global stability practices
5	• Understanding and predicting pharmaceutical product shelf life
6	• Stability methodologies (overview)
7	• Development of stability indicating methods
	• (Presentation)
8	• Overview of USP-NF requirements for stability
9	• Non chromatographic methods for stability program
10	• Vibrational spectroscopic methods for quantitative analysis
11	Evaluation of stability data
12	 Qualification, calibration and maintenance of stability chambers
12	
15	Stability operation practices
14	 Stability studies in biologics
15	Open discussion
	• (Final Presentation)

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Problem solving

<u>6- Student Assessment methods:</u>

Written exams to assess: a1, a2, a3, b1, b2 Oral exam to assess: a1, a2, a3, b1, b2 Activities to assess: d1, d2

Assessment schedule:

Assessment (1): Activity	Week 7-15
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Essential books: Drug Stability: Principles and Practices (Drugs and the Pharmaceutical Sciences) by Jens T. Carstensen and Christopher Rhodes (2000).

B- Suggested books:

- Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices, Kim Huynh-Ba, 389 (2008).
- 2- Extended Stability for Parenteral Drugs, 5th Edition (Extended Stability of Parenteral Drugs), Fifth Edition, Caryn Dellamorte Bing R.PH. M.S. FASHP and Anna Nowobilski-Vasilios, American Society of Health-System Pharmacists; (2013)

Analytical Chemistry Department

Faculty of Pharmacy

C- Websites: Pubmed, Sciencedirect, Weilyinterscience

Facilities required for teaching and learning:

1. For lectures: Black (white) boards, data show.

- Course Coordinators:
- Head of Department:
- Date: اعتماد التوصيف بمجلس القسم

	Matrix I of Drug Stability								
			IL(Ds of	drug	stabil	ity course	1	
	Course Contents	Knowledge and understanding			Intell ski	ectual ills	Transferable and general skills		
		al	a2	a3	b1	b2	d1	d2	
1	Drug stability (Overview – importance)	Х							
2	Stability regulations (overview)		х						
3	Critical regulatory requirements for a stability program		x						
4	Global stability practices		х						
5	Understanding and predicting pharmaceutical product shelf life		х			x			
6	Stability methodologies (overview)			х					
7	Development of stability indicating methods (Presentation)			X			Х	Х	
8	Overview of USP-NF requirements for stability			x					
9	Non chromatographic methods for stability program			х	х				
10	Vibrational spectroscopic methods for quantitative analysis			x	х				
11	Evaluation of stability data			х	х				
12	Qualification, calibration and maintenance of stability chambers			х					
13	Stability operation practices			X					
14	Stability studies in biologics			Х					
15	Open discussion (Final Presentation)	х	x	x	х	x	X	X	

				Matrix II of Dru	ig stability	y				
ARS		Program	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
		ILOS	ILUS			Lecture	Self learning	Written exam	Oral Exam	Activity
		A.8- Demonstrate the stability programs for pharmaceutical	a1	Drug stability (Overview – importance)	Textbooks, Scientific papers and self learning	х	xx	х	х	
2.1	2.1.3- Scientific developments in the area of specialization.	products and the latest regulations for stability testing and ability to predict the degradation pathways of a drug design a stabilization protocol and predict a product shelf-life.	a2	Stability regulations (overview) Critical regulatory requirements for a stability program Global stability practices Understanding and predicting pharmaceutical product shelf life	Textbooks, Scientific papers and self learning	X	X	Х	X	
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.11- Mention the legal aspects for professional practices.	a3	Stability methodologies (overview) Development of stability indicating methods Overview of USP-NF requirements for stability	Textbooks, Scientific papers and self learning	X	Х	Х	X	

Faculty of Pharmacy

				Non chromatographic methods for stability program Vibrational spectroscopic methods for quantitative analysis Evaluation of stability data Qualification, calibration and maintenance of stability chambers Qualification, calibration and maintenance of stability chambers Stability operation practices Stability studies in biologics						
	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret quantitative data obtained from pharmaceutical research in a specific and suitable form.	b1	Understanding and predicting pharmaceutical product shelf life	Textbooks, Scientific papers and self learning	Х	х	Х	х	
2.2	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest significant solutions for pharmaceutical results and outcome errors based on a wide academic background.	b2	Non chromatographic methods for stability program Vibrational spectroscopic methods for quantitative analysis Evaluation of stability data	Textbooks, Scientific papers and self learning	x	x	X	х	

Analytical Chemistry Department

Faculty of Pharmacy

2.4	2.4.2- Effectively use information technology in professional practices	D.2- Acquire computer skills in analyzing results and presenting them.	d1	Activity	Textbooks , Scientific papers and self	x		X
					learning			
	2.4.4- Use variable sources to get information and knowledge.	D.4-Practice how to retrieve information from a variety of sources including libraries, databases and internet.	d2	Activity	Textbooks , Scientific papers and self learning	x		X

Analytical Chemistry Department

Programs and Courses specifications

Special Courses

Analytical Chemistry Department

Programs and Courses specifications

Potentiometry, Voltammetry and Electrochemical sensors

Course specification of Potentiometry, Voltammetry and Electrochemical sensors

A-<u>Course specifications:</u>

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Potentiometry, Voltammetry and Electrochemical sensors

Code: Asp1 Lectures: 4 hrs/week Total: 4 hrs/week

Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students should be able to outline principles and procedures of different potentiometric, ion selective and voltammetric methods of analysis, describe different types of electrochemical sensors and apply these techniques to analyze different analytes. Method development and validation will be covered as well.

Programs and Courses specifications

3. Intended learning outcome s (ILOs) of Potentiometry, Voltammetry and Electrochemical sensors:

A- K	nowledge and Understanding
<u></u> 1	Outline the basis and principles of potentiometric, voltammetric
aı	and ion selective electrode.
	Describe different types of ion-selective electrodes and
a2	electrochemical sensors.
a 3	Demonstrate different applications of potentiometry, voltammetry
aJ	and ion selective electrode.
B- In	tellectual skills
h	Design appropriate experiments in the laboratory for assay of
D 1	substances.
b ₂	Assess the problems encountered during analytical procedures.
D-G	eneral and Transferable skills
4	Acquire Computer skills like preparing presentations and
u ₁	collecting information through different data-bases.
d ₂	Work effectively in a team
d ₃	Improve scientific brain storming and problem solving skills

4. Course Contents of Potentiometry, Voltammetry and Electrochemical sensors:

Week number	Content
1	Introduction to electrochemistry.
2	Potentionmetry:
	Introduction
	Principles of potentiometric measurements.
3	Reference electrodes and Metallic indicator
	electrodes.

Programs and Courses specifications

4	Ion Selective Electrodes
	Theory
	Glass electrodes
5	Ion Selective Electrodes
	Liquid membrane electrodes
	Applications
6	Ion Selective Electrodes
	Solid state electrodes
	Coated wire electrodes
7	Applications of Potentiometry.
8	Voltammetry:
	Introduction
	Principles of voltammetric measurements.
	Activity
9	Voltammograms
10	Quantitative and Qualitative aspects of voltammetry
11	Voltametric Techniques
12	Quantitative voltammetric applications
13	Characterization voltammetric applications
14	Electrochemical Sensors
15	Open discussion and Revision

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Assignments

Programs and Courses specifications

<u>6- Student Assessment methods:</u>

Written exams	s to assess:	a1, a2, a3, b1, b2
Oral exam to a	assess:	a1, a2, b1 and b2
Activity to a	ssess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

1-Analytical Electrochemistry, Joseph Wang, Wiley-VCH, 2000.

2- Modern Analytical Chemistry, David Harvey, McGraw-Hill

Companies, 2000.

C-Websites/Journals:

Electrochemistry

Drug Testing and Analysis

Analytical Letters

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

• Course Coordinators: Prof. Magda El-Maamli

Prof. Hanaa Saleh

- Head of Department: Prof. Dr. Magda El-Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

Mat	rix I of Potentiometry, Volt	ammet	ry an	d Ele	ctroch	emica	al se	enso	ors		
		ILOs									
	Course Contents	Knov unde	vledge a erstandii	Intelle ski	General and Transferable skills						
		a1	a2	a3	b1	b2	d ₁	d ₂	d ₃		
1	Introduction to electrochemistry	X									
2	Potentionmetry: *Introduction *Principles of potentiometric measurements.	x									
3	Reference electrodes and Metallic indicator electrodes.		x								
4	Ion Selective Electrodes *Theory *Glass electrodes	x	x								
5	Ion Selective Electrodes *Liquid membrane electrodes *Applications		x	x	x	x					
6	Ion Selective Electrodes *Solid state electrodes *Coated wire electrodes		x								
7	Applications of Potentiometry .			x	X	x					
8	Voltammetry: *Introduction * Principles of voltammetric measurements. Activity	x					x	x	X		
9	Voltammograms	X									
10	Quantitative and Qualitative aspects of voltammetry			x	x	x					
11	Voltametric Techniques	X									
12	Quantitative voltammetric applications			x	x	x					

Analytical Chemistry Department

Faculty of Pharmacy

13	Characterization voltammetric applications			X	Х	X				
14	Electrochemical Sensors		X							
15	Open discussion and revision	x	X	X	X	X				
	Matrix II of Potentiometry, Voltammetry and Electrochemical sensors									
-----	--	---	----------------	--	---	------------------	------------------------------	-----------------	-------------------	-----------
ARS		Program ILOs	Course ILOs	Course contents	Sources	Teac le: m	hing and arning ethods	Nas	lethod ssessme	of ent
						lecture	self learning	written exam	Oral Exam	Activity
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry and physical chemistry.	al	Introduction to electrochemistry Potentionmetry: Introduction and Principles of potentiometric measurementsIon Selective Electrodes: TheoryVoltammetry: Introduction and Principles of voltammetric measurements VoltammogramsVoltametric Techniques	Textbooks, Scientific papers and self learning	x	X	х	x	

Analytical Chemistry Department

Faculty of Pharmacy

				Reference electrodes and						
				Metallic indicator electrodes						
				Glass electrodesLiquid						
			a2	membrane electrodesSolid					х	
				state electrodes						
				Coated wire electrodes						
				Electrochemical Sensors						
Ī				Ion Selective Electrode:						
	212 Mutual	A 2 Identify the main	a3	ApplicationsApplications of						
	2.1.2- Mutual	A.3- Identify the major		PotentiometryQuantitative	Textbooks,					
	influence between	professional practice and its impact on the science, industries and		and Qualitative aspects of	Scientific					
	professional practice			voltammetryQuantitative	papers and self learning	Х	Х	x	х	
	and its impact on the			voltammetric applications						
	environment. environment.		Characterization voltammetric							
				applications						
				Ion Selective Electrode:						
				ApplicationsApplications of						
	2.2.6- Plan to	P.7. Design a laboratory		PotentiometryQuantitative						
	improve performance	B./- Design a faboratory	h 1	and Qualitative aspects of	Textbooks, Scientific					
2.2	in the field of	protocol for a requested	01	voltammetryQuantitative	papers and self	х	Х	Х	Х	
	specialization.	anarytica issue.		voltammetric applications	learning					
				Characterization voltammetric						
				applications						

Analytical Chemistry Department

Faculty of Pharmacy

				1				·	
2.2.7- Professional			Ion Selective Electrode:						
decision-making in			ApplicationsApplications of						
the contexts of	B.8- Assess problems		PotentiometryQuantitative						
diverse disciplines.	encountered during	b 0	and Qualitative aspects of	Textbooks, Scientific					
	analytical assay and make	02	voltammetryQuantitative	papers and self	Х	Х	Х	Х	
	professional decisions.		voltammetric applications	learning					
			Characterization voltammetric						
			applications						
2.4.2- Effectively	D.2- Acquire computer								X
use information	skills such as internet,		Activity						
technology in	word processing,	d1							
professional	chemometric and kinetic								
practices	softwares.								
2.4.6- Work in a	D 6- Work effectively as a								Х
team and lead	team member								
teams carrying out	D 7 Acquire team leader	d2	Activity						
various professional	D.7- Acquire team leader								
tasks.	skins for the future work.								
2.4.5- Set criteria									Х
and parameters to	D.5- Set rules for judging								
evaluate the	others chemists	d3	Activity						
performance of	performance in the team.								
others									
				1	1				

Analytical Chemistry Department

Programs and Courses specifications

Kinetic methods of analysis

Course specification of Kinetic methods of analysis

A-<u>Course specifications:</u>

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program:
- Department offering the course:
- Analytical Chemistry. Analytical Chemistry.
- Date of specification approval:

1- Basic information:

Title: Kinetic methods of analysis	Code: Asp2
Lectures: 4 hrs/week	Credit hours: 4 hrs/week
Total: 4 hrs/week	

<u>2- Overall aim of the course:</u>

On completion of the course, the students should be able to outline the principles of kinetics, reaction rates and factors affecting them, apply studied kinetic methods for determination of different pharmaceutical compounds and describe the analysis of kinetic results.

3. Intended learning outcomes (ILOs) of Kinetic methods of analysis:

A-K	nowledge and Understanding
.1	Outline the principles of kinetics, reaction rates and factors
al	affecting them.
a2	Describe kinetic methods of analysis.
	Enumerate different types of reaction order and the corresponding
a3	half-life law. Enumerate different types of reaction order and the
	corresponding half-life law.
a4	Explain reaction mechanism according to different theories.
.5	Outline kinetic methods of analysis used in spectrophotometric
as	analysis.
B- In	tellectual skills
	Manipulate data, calculate reaction order and activation energy
D ₁	,determine rate law and interpret kinetic results.
b ₂	Prove the rate law using different reaction mechanisms.
L	Suggest the most appropriate kinetic method of analysis for the
D3	assay of a chosen analyte.
D-G	eneral and Transferable Skills
-	Retrieve information from various sources in the field of analytical
a ₁	chemistry.
d ₂	Optimize work hours and manipulate time threats
d ₃	Study independently and plan research studies.

<u>4. Course Contents of Kinetic methods of analysis:</u>

Week number	Contents
1	 Monitoring the progress of a reaction
	• Techniques for monitoring concentrations as a

Analytical Chemistry Department

Faculty of Pharmacy

	function of time
2	• Monitoring the progress of a reaction
	• Techniques for monitoring concentrations as a
	function of time
3	• Rate Law and its types
4	• Reaction order
	 zero and first order
	\circ second and third order
	• Pseudo-order reactions
5	Determination of rate law
	\circ Isolation method
	\circ Initial rate method
	• Integrated rate law (graphical plot)
	• Half-lives (equi-fractional part) method
6	• Half-life time of different orders of reaction
	 Activity
7	Molecularity of a reaction
	Reaction mechanisms
	 Steady state approximation "SSA"
8	• The Lindemann-Hinshelwood mechanism for
	unimolecular reactions
	 Experimental deviation of Lindemann-Hinshel-
	wood model
9	• Theories of reaction rate:
	• Transition state theory
	 Collision theory

Zagazig university **Analytical Chemistry Department Faculty of Pharmacy Programs and Courses specifications** 10 Catalysis type and mechanism • • Homogenous catalysts • Heterogenous catalysts 11 Activation energy (Ea) • • Maxwell–Boltzmann Distributions 12 • Relation between rate constant and Ea • Arrhenuis plot and calculation of Ea. 13 • Kinetic spectrophotometric methods of analysis • determination of reaction order • Determination of drug concentration and the 14 interpretation of kinetic results. \checkmark Initial rate method \checkmark Rate constant method \checkmark Fixed concentration method ✓ Fixed time method • Open discussion and revision 15

5- Teaching and Learning Methods:

- Lectures
- Self learning
- Problem solving and brain storming
- Open discussion

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, a4,a5, b1, b2,b3
Oral exam to assess:	a1, a2, a3, a4,a5, b ₁ , b ₂ ,b ₃
Activity to assess:	d1,d2 and d3

Programs and Courses specifications

Assessment schedule:

Assessment (1): Activity	Week 6
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Chemical Kinetics: From Molecular Structure to Chemical Reactivity,

By Luis G Arnaut, Sebastiao Jose Formosinho, Hugh Burrows, Oxford 1st ed 2007.

C- Suggested books:

Chemical Kinetics And Reaction Dynamics, Paul L. Houston,

McGraw Hill comp., 2001.

D- Websites:

www.sciencedirect.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Dr. Magda El-Maamli Dr. Heba El-Sayed
- Head of Department: Prof. Dr. Magda El Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

Analytical Chemistry Department

Faculty of Pharmacy

Matrix I of Kinetic methods of analysis											
						II	lOs				
Course Contents			Knowledge and I understanding					Intellectual skills		General and Transferable Skills	
		a1	a2	a3	a4	a5	b1	b2	d1	d2	d3
1	Mechanisms of chemical reactions	X									
2	Rates of the reaction and their measurement	x									
3	zero and first order Reactions	X									
4	second and third order reactions	x									
5	Methods for the determination of the order of the reaction	x									
6	Concentrations and Time: Half- Lives	x									
7	Pseudo-order reactions	x									
8	Molecularity of a reaction Activity	x							x	x	x
9	Collision theory	X									
10	Transition state theory	X									
11	Catalysis	x									
12	Kinetic methods of analysis and interpretation of kinetic results.		x				X	X			
13	Activation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)						x				
14	The Quality of Analytical Measurements Average run length: cusum charts Proficiency testing schemes Collaborative trials Uncertainty Acceptable sampling			x	x	x					
15	Open discussion and revision	X	x	X	X	x	x	X			

	Matrix II of Kinetic methods of analysis											
ARS		ARS		Program ILOs	Course ILOs	Course contents	Sources	Teac and lea met	ching arning hods	M ass	ethod o sessmen	f it
						Lectur e	Self learning	Written exam	Oral Exam	Activity		
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and chemical kinetics.	a1	Mechanisms of chemical reactionsRates of the reaction and their measurementZero, First, Second and Third order of reactionMethods for determining reaction order Conc. And TimePseudo order reactionMolecularity of ReactionCollision TheoryTransition state theoryCatalysis	Textbooks, Scientific papers and self learning	x	x	x	X			
	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.2- Recognize good practice principles and environmental samples analysis.	a2	Kinetic methods of analysis and the interpretation of kinetic results	Textbooks, Scientific papers and self learning	x	x	X	X			

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.4- Moral and legal principles for professional practice in the area of specialization.	A.6- Figure out drug stability features and kinetics chemistry.	a3	Proficiency testing schemes Collaborative trials Uncertainty Acceptable sampling	Textbooks, Scientific papers and self learning	x	X	X	x	
	2.1.5- Principles and the basics of quality in professional practice in the area of specialization.	A.8- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP) and quality assurance in pharmaceutical and industrial analysis.	a4	The Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	X	x	x	
	2.1.6- The fundamentals and ethics of scientific research.	A.9- Demonstrate full awareness of ethics in all aspects of analytical techniques.	a5	the Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	x	x	x	x	
2	2.2.1- Analyze and evaluate information in the field of specialization and analogies to solve problems	B.1- Analyze and interpret both quantitative and qualitative data obtained from analytical chemistry research in a specific and suitable form.	b1	Kinetic methods of analysis and interpretation of kinetic resultsActivation energy (Ea), Determination of rate constant and Ea (Arrhenuis plot)	Textbooks, Scientific papers and self learning	x	X	X	x	

Analytical Chemistry Department

Faculty of Pharmacy

	2.2.2- Solve specified problems in the lack or missing of some information.	B.2- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Kinetic methods of analysis and interpretation of kinetic results	Textbooks, Scientific papers and self learning	x	X	x	x	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources in the field of analytical chemistry.	d1	Activity						Х
	2.4.7- Manage time effectively.	D.8- Handle working hours appropriately.	d2	Activity						Х
	2.4.8- Continuous and self learning.	D.9- Study independently and plan research studies.	d3	Activity						X

Analytical Chemistry Department

Programs and Courses specifications

Spectrophotometry

Course specification of Spectrophotometry

A- Course specifications:

- Program on which the course is given: Master's of Pharmaceutical Sciences
- Major or Minor element of program: Major
 Department offering the program: Analytical Chemistry.
 Department offering the course: Analytical Chemistry.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Spectrophotometry

Lectures: 4 hrs/week Total: 4hrs/week Code: Asp3 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students should be able to outline the principles of spectrophotometry, describe theories, operation, instrumentation and applications of spectrophotometry and related techniques, state the main theories, advantages and disadvantages of spectrophotometry, derivative spectrophotometry and flow injection spectrophotometry. Student will be also able to explain the basic components of spectrophotometer, carrying out different measurements on spectral analyzers after selecting the most appropriate assay design for the chosen analyte taking into consideration the nature and stability of compounds as well as economical and environmental factors and apply these techniques in the analysis of raw materials, pharmaceutical preparations and biological sample

3. Intended learning outcomes (ILOs) of Spectrophotometry:

A- K	A- Knowledge and Understanding							
	Demonstrate the principles, instrumentation and operation of							
a1	spectrophotometry, derivative spectrophotometry and flow							
	injection spectrophotometry.							
	Describe the instrumentation, pharmaceutical and biological							
a2	applications of spectrophotometry, derivative spectrophotometry							
	and flow injection spectrophotometry.							
B- In	tellectual skills							
b ₁	Determine the most appropriate assay design for the chosen							
~1	analyte.							
D-G	eneral and Transferable Skills							
d	Retrieve information from various sources in the field of analytical							
u ₁	chemistry.							
d ₂	Work effectively with other researchers and judge their work.							
d ₃	Carry out responsibilities of either team leader or member.							

<u>4. Course Contents of Spectrophotometry:</u>

Week number	Contents
1	Introduction to light absorption
	Electromagnetic spectrum
	Visible and ultraviolet spectra
	The Beer-Lambert law
	Deviation from Beer-Lambert law
2	Spectra of some important naturally occurring
	chromophores
3	Spectrophotometer configuration
4	Choice of spectrophotometer operating conditions

5	Use of spectrophotometer
	Baseline
	Isosbestic points
	Wavelength and absorbance calibration
	Choice and use of cuvettes
	Detailed examples
6	Derivative spectrophotometry
	• Introduction
	• Instrumentation
	 Practical Aspects
	• Applications
7	Recent spectrophotometric methods for multicomponent
	analysis
	• Ratio subtraction method
	 Ratio difference method
	• Mean center method
	 Constant centering method
	• H-point method
	 Isoabsorptive method
8	Spectrophotometric assays
	Introduction
	Assay Design
	Activity
9	Spectrophotometeric assay of protein
10	Enzyme based spectrophotometric assay
11	Luminescence based assay
12	Flow-injection spectrophotometry
13	Pharmaceutical and biological applications of

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

	spectrophotometry
14	Revision
15	Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Critical thinking
- Cooperative assignments

<u>6- Student Assessment methods:</u>

Written exams to a	ssess: a1, a2, b1
Oral exam to asses	s: a1, a2, b1
Activity to assess	d1, d2, d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
• Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

Spectrophotometry and spectrofluorimetry, Michael G. Gore, Oxford University press, 2000.

C- Suggested books:

UV-visible spectrophotometry of water and wastewater, Olivier Thomas, Christopher Burgess, Elsevier, 2007.

Websites/Journals:

Spectrochemica Acta

Spectroscopy

Analytical Chemistry

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof Dr/ Magda El-Henawee Head of Department: Prof. Dr. Magda El-Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

	Matrix I of Spectrophotometry								
		ILOs							
	Course Contents	Kno a Under	wledge and standing	Intellectual skills	General and Transferable Skills				
		a1	a2	b1	d1	d2	d3		
1	Introduction to light absorption	X							
	Spectra of some important naturally occurring								
2	chromophores	x							
3	Spectrophotometer configuration	x							
4	Choice of spectrophotometer operating conditions	x							
5	Use of spectrophotometer	X							
	Derivative spectrophotometry								
6	*Introduction *Instrumentation	X							
	Derivative spectrophotometry								
7	*Practical Aspects		X	Х					
	*Applications								
	Spectrophotometric assays								
8	*Introduction		Х	X	X				
	*Assay Design								
	Spectrophotometeric assay of protein								
9 10	Enzyme based spectrophotometric assay		X	X					
10	Luminescence based assay		X	X					
11	Flow-injection spectrophotometry	v	x	X					
14	Pharmaceutical and biological applications of	A	•	A					
13	spectrophotometry		X	Х					
14	Revision	x	X	X					
15	Open discussion	x	X	X		X	x		

	Matrix II of Spectrophotometry									
ARS		Program ILOs	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
			1205			Lecture	Self learning	Written exam	Oral Exam	Activity
2.1	2.1.1- Theories and fundamentals related to the field of learning as well as in related areas.	A.1- Illustrate the basics of analytical chemistry and related subjects including: instrumental analysis, spectrophotometry, electrochemistry, physical chemistry and kinetic chemistry.	al	Introduction to light absorptionSpectra of some important naturally occurring chromophores -Spectrophotometer configurationChoice of spectrophotometer operating conditions Use of spectrophotometer- Derivative spectrophotometry *Introduction and InstrumentationFlow- injection spectrophotometry	Textbooks, Scientific papers and self learning	Х	X	х	X	

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.2- Mutual influence between professional practice and its impact on the environment.	A.3- Identify the major impact and applications of analytical chemistry in science, industries and environment.	a2	Derivative spectrophotometry *Practical Aspects *Applications Spectrophotometric assays Spectrophotometeric assay of proteinEnzyme based spectrophotometric assayLuminescence based assayFlow injection spectrophotometry Pharmaceutical and biological applications of spectrophotometry	Textbooks, Scientific papers and self learning	Х	х	х	Х	
--	--	---	----	--	---	---	---	---	---	--

Analytical Chemistry Department

Faculty of Pharmacy

2.2	2.2.6- Plan to improve performance in the field of specialization.	B.7- Design a laboratory protocol for a requested analytical issue.	b1	Derivative spectrophotometry *Practical Aspects *Applications Spectrophotometric assays Spectrophotometeric assay of proteinEnzyme based spectrophotometric assayLuminescence based assayFlow- injection spectrophotometry Pharmaceutical and biological applications of spectrophotometry	Textbooks, Scientific papers and self learning	x	x	X	X	
2.4	2.4.4- Use variable sources to get information and knowledge.	D.4- Retrieve information from various sources required for drug analysis and drug design.	d1	Activity						х

Analytical Chemistry Department

Faculty of Pharmacy

2.4	2.4.5- Set criteria and parameters to evaluate the performance of others	D.5- Set rules for judging others chemists performance in the team.	d2	Activity			X
2.4	2.4.6- Work in a team and lead teams carrying out various professional tasks.	D.6- Work effectively as a team member. D.7- Acquire team leader skills for the future work.	d3	Activity			X

Analytical Chemistry Department

Programs and Courses specifications

Thesis

Specification

Thesis of Master Degree

A-Thesis specifications:

- **Program on which the course is given:** Master of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval:

<u>1- Basic information:</u>

- Title: Master Thesis in Analytical chemistry
- Credit hours: 30 hrs

<u>2- Overall aim of the thesis:</u>

On completion of the thesis; the students will be able to design a robust study to answer the research questions, identify and perform different analytical techniques and methods used for the experimental work according to the designed protocol, analyze results of the study in the light of prior knowledge and also draw conclusions about the contribution to knowledge by the study

<u>3- Intended learning outcome's (ILOs):</u>

Knowledge and Understanding						
	Outline theoretical and advanced bases of analytical chemistry					
al	related to main objectives of the thesis					
	Determine the problem the thesis will handle in correlation with					
a2	the community and surrounding environment					
	Explain clearly the principles of different and advanced					
a3	qualitative and quantitative analytical techniques					
a4	Understand any legal aspects related to the thesis work.					
_	Demonstrate GLP and quality assurance related to practical work					
a5	of the thesis					
a6	Identify and apply scientific experimental ethics.					
Intel	Intellectual skills					
	Solve problems related to practical work by obtained quantitative					
b1	data from the practical work					
	Discuss professional problems and suggest solutions relay on					
b2	different pharmaceutical knowledge and recent information					
b3	Combine required specialties to manage the subject under study					
	Integrate scientific results and write report following conducting					
b4	research					
b5	Manage risks and hazards related to professional practical area					
b6	Design a laboratory protocol for the work					
b7	Decide what to do with full responsibility in scientific research					
Profe	Professional and practical skills					
c1	Apply different techniques related to practical thesis work.					
c2	Use and evaluate practical data to write report					

c3	Apply various biochemical techniques involved in the protocol					
Gene	General and Transferable skills					
d1	Communicate effectively with all people related to the work					
d2	Use information technology in review and thesis preparation					
d3	Evaluate the work and learning needs					
.1.4	Use various sources to get information about the subject					
a 4	understudy					
d5	Set rules for evaluation and judging others performance.					
d6	Work effectively as a member of a team					
d7	Acquire time management skills					
d8	Study independently and plan research studies.					

4. Thesis Content:

Steps	Content
1^{st}	Suggest the possible points/ problems of research that the candidate can
	work on in the frame of the aim of work and choose proper point
	related to the problems of the community and surrounding environment.
	Collect all available information about this subject by all possible means.
	Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.
	Design the protocol including the steps of work following the suitable timetable.
	Increase the awareness of the recent biochemical and analytical
	techniques that will be used during practical work and determined by
	the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical
	and organic chemistry knowledge, biostatistics,) to solve

	suggested problem.
	Continuous evaluation to the thesis outcome according to the schedule.
and	Identify different practical techniques and methods to assess
2	biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
5	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples
4 th	Communicate with supervisors to discuss results .
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).
	Present the results periodically in seminars.
	Write scientific reports on the obtained results with conclusive significance.
	Discuss obtained results in comparison with pervious literatures.

Suggest possible recommendations based on the outcome of the thesis and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and writing scientific papers.

<u>5- Teaching and Learning Methods:</u>

- Self learning (Activities, Research....)
- Research group meetings
- Departmental seminars
- Critical thinking
- Problem solving

<u>6- References:</u>

Book: How to Write a Master's Thesis, By Yvonne N. Bui, SAGE

publications Inc, 2009.

Websites: Pubmed, Sciencedirect, Weilyinterscience

Other resources: Faculty and University libraries

Facilities required for:

- 1. For practical work: U.V spectrophotometer, Sonicator, Colorimeter, Flouremeter, HPLC.
- Head of Department: Prof. Dr. Magda El-Henawee

تم اعتماد توصيف الرسالة في مجلس القسم بتاريخ 10 / 2017

Analytical Chemistry Department

Programs and Courses specifications

PhD Degree

Analytical Chemistry Department

Programs and Courses specifications

Program Specification

Programs and Courses specifications

Program Specification

A-Basic Information

1- Program title: PhD. Pharm. Sci Degree in Analytical

Chemistry

2- Program type: Single.

3- Faculty/ University: Faculty of Pharmacy, Zagazig University

4- Department: Analytical Chemistry

5- Coordinator: Prof. Dr. Hisham Ezzat

6- Date of program specification approval:

B- Professional Information

1- Program aims:

The aim of the Ph.D. program in Analytical chemistry is to develop the skills of researchers to become professionals and leaders in scientific research, drug analysis and also educational field. Ph.D. students will be capable of making original contributions to the advancement of Analytical chemistry and related disciplines. Few formal courses are required for the Ph.D. degree. The purpose of advanced course work is to build on the foundation gained in undergraduate study to give additional depth in specialty areas of interest to individual students. Students select courses that will equip them for research of high quality, broaden their general background, and aid them in preparing for doctoral exams.

The broad objectives of the Program are:

1. To prepare training of trainers (TOT) team in advanced analytical and bioanalytical techniques.

- 2. To provide students with updated theories and practical skills for analyzing problematic pharmaceutical compounds.
- 3. To enable researchers to acquire, process and interpret the analytical data using recent and advanced softwares.
- 4. To advance the experience of students in the area quality by design and step by step industry troubleshooting.
- 5. To achieve good experience in the area of in analytical interferences such as drug degradation products, impurities and biological fluids endogenous components.
- 6. To enable students to recognize importance and rule of analytical chemistry in the field of pharmacokinetic studies.
- 7. To investigate new approaches in drug analysis such as green analytical chemistry.
- 8. To correlate actual pharmaceutical industry problems with drug analysis and characterization.
- To teach Ph.D students how to apply for governmental and private grants, write updating reports for clients and pharmaceutical companies and negotiate with

The Analytical Chemistry Ph.D. graduates can work in a multidisciplinary profession fields such as Research & Development Laboratories, Educational and Research institutes, Analytical and Bioanalytical laboratories, Medical Centers, Hospitals, Universities, National Quality Control Centers, Pharmaceutical Industry, Ministry of Health, Drug Bioequivalence and Drug Bioavailability centers. Graduate students have an excellent chance to catch advanced positions such as group leaders and managers in these places.

Graduate Attributes:

Ph.D. graduates should gain the mandatory attributes & cleverness in variety of Analytical Chemistry and related disciplines including the following:

- 1. Investigative skills and elevate analytical techniques to a high level.
- 2. Learn to use advanced analytical instrumentation.
- 3. Be prepared for industry-based learning.
- **4.** Inculcate a problem solving approach by coordinating different analytical techniques.
- Contribute to scientific heritage by publishing research in specialized journals for pharmaceutical analysis.
- **6.** Perseverance and working under changing circumstances and with different team works.
- 7. Be able to manage a team of chemists and researchers.
- **8.** Contribute in the future as a supervisor or co-advisor for gradute students.
- 9. Study the theoretical basis and areas of application for the most commonly used areas of high-sensitivity; highly selective instrumental separation science (chromatography) and the most widely used but diverse methods of detection of chemicals (spectroscopy).

2-Intended Learning Outcomes (ILOs):

The Program provides outstanding opportunities for Ph.D students to reveal knowledge and understanding skills and successfully develop requirements for Advanced degree in Analytical chemistry.
2-1- Knowledge and Understanding :

On successful completion of the PhD degree Program, students will be able to:

A.1- Illustrate the basis of analytical chemistry and related subjects with additional depth in advanced spectroscopic and chromatographic.

A.2-Have comprehensive knowledge and clear understanding of the theories and advancements in the field of analytical chemistry and related fields

A.3- Collaborate with different specializations needed to integrate the research approach used in the plan using chemometric analysis principles.

A.4- Describe the scientific research methodologies, ethics, and professional practice especially in the areas of Chemometry, Spectroscopy and Chromatography.

A.5- Provide proposals for research assumptions for the chromatographic analysis of pharmaceutical mixtures

A.6- Comprehend the ethical aspects required by professionals.

A.7- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP), quality control, quality assurance, and quality by design.

A.8- Recognize the concepts and basics of laboratory safety and waste disposal.

A.9- Identify the beneficial impact and applications of analytical chemistry towards a safe environment.

A.10- Provide research ideas to solve problems for the environment. A.11-Link the different parts to produce a general knowledge serve the research assumptions.

2-2 - Intellectual Skills:

On successful completion of the PhD degree Program, students will be able to:

B.1- Apply the proper testing and calculations for data interpretation.

B.2- Evaluate the results and statistical analysis of the result with commitment to objectivity.

B.3- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.

B.4- Solve the problems which obstacle to research plan and research results

B.5- Apply proper research tools to establish novel facts and solve new or existing analytical problems using scientific methods.

B.6- Establish a good knowledge in writing and publishing research articles.

B.7- Recognize possible hazards and biohazards during conducting research and routine work and how to deal with them safely.

B.8- Integrate the gained knowledge of analytical chemistry for assaying pharmaceuticals of complex nature and Design a laboratory protocol for a requested analytical issues.

B.9- Take professional decisions in the area of specialization.

B.10- Show creativity in solving analytical problems.

B.11- Discuss different practical solutions for a given analytical problem.

B.12-Justify the conclusions by providing the scientific evidences.

2-3 - Professional and Practical Skills:

It is intended that, on successful completion of the PhD degree Program, students will be able to:

C.1- Recognize with personal command the recent laboratory techniques

in Analytical Chemistry research.

C.2- Accomplish advanced techniques and basic concepts of scientific research in pharmaceutical analytical chemistry.

C.3- Write with confidence reliable scientific reports and conclusions in

pharmaceutical analysis.

C.4- Summarize and display the scientific research without compromising rigorous scientific content.

C.5- Develop and assess novel methods of analysis of target analytes

either in trace amounts.

C.6- Implement sophisticated analytical instruments for assay of analytes

in complex matrices and biological fluids.

C.7- Set a plan for the improvement of professionals and researchers.

2-4 - General and Transferable Skills:

On successful completion of the PhD degree Program, students will be able to:

D.1- Communicate with the groups participating in the research project.

D.2- Acquire advanced computer skills and train on new softwares used for instrumentation and data processing.

D.3- Help your colleagues and coworkers to increase the quality of research.

D.4- Commit to scientific security and disseminate information and provide counsel and advice.

D.5- Practice self assessment and continues working in the field analytical chemistry.

D.6- Retrieve information from various sources in the field of analytical chemistry.

D.7- Work effectively as a member of team, and improve leadership skills.

Acquire the capacity to lead the team work

D.8- Arrange for periodical meetings and scientific talks.

D.9-Use work hours effectively and put different work plans for different circumstances.

<u>3- Academic Standards:</u>

• ARS (Academic Reference Standards)

Matrix: Comparison between PhD degree program ILOs and the

Academic Reference Standards

	ARS	Program ILOs					
		A.1- Illustrate the basis of analytical					
		chemistry and related subjects with					
	2.1.1- Fundamental and in-depth	additional depth in advanced					
	knowledge and basic theories in the	spectroscopic and chromatographic.					
lg	field of specialty and the closely	A.2-Have comprehensive knowledge					
ndir	related areas of pharmaceutical	and advancements in the field of					
ndersta	sciences	analytical chemistry and related fields					
		specializations needed to integrate the					
d U		research approach used in the plan using					
an		A 4 Describe the scientific research					
lge		A.4- Describe the scientific research					
lec		methodologies, ethics, and professional					
MOL	212 Fundamentals methods	practice especially in the areas of					
Kı	techniques, tools and ethics of	Chemometry, Spectroscopy and					
	scientific research	Chromatography.					
	Scientific research	A.5- Provide proposals for research					
		assumptions for the chromatographic					
		analysis of pharmaceutical mixtures					

Faculty of Pharmacy

Analytical Chemistry Department

	2.1.3- The ethical and legal principles in pharmacy and academic practices	A.6- Comprehend the ethical aspects required by professionals.
	 2.1.4- The principles and bases of quality assurance in professional practice in the field of specializations 2.1.5- All relevant knowledge concerning the impact of professional practice on society and environment and the ways of their conservation and development 	 A.7- Demonstrate full commitment to good laboratory practice (GLP), good manufacture practice (GMP), quality control, quality assurance, and quality by design. A.8- Recognize the concepts and basics of laboratory safety and waste disposal. A.9- Identify the beneficial impact and applications of analytical chemistry towards a safe environment. A.10- Provide research ideas to solve problems for the environment. A.11-Link the different parts to produce a general knowledge serve the research assumptions.
	2.2.1- Analyze, evaluate the data in his / her specified area, and utilize them in logical inference processes (induction/deduction).	B.1- Apply the proper testing and calculations for data interpretation.B.2- Evaluate the results and statistical analysis of the result with commitment to objectivity.
Intellectual Skills	 2.2.2- Propose solutions to specified problems in the light of the available data (information). 2.2.3- Conduct research studies that add to the current knowledge. 	 B.3- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples. B.4- Solve the problems which obstacle to research plan and research results B.5- Apply proper research tools to establish novel facts and solve new or existing analytical problems using scientific methods. B.6- Establish a good knowledge in
	2.2.4- Formulate scientific papers.	writing and publishing research articles.

Faculty of Pharmacy

Analytical Chemistry Department

2.2.5- Assess hazards and risks in professional practice in his / her area of specialization.	B.7- Recognize possible hazards and biohazards during conducting research and routine work and how to deal with them safely.								
2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.8- Integrate the gained knowledge of analytical chemistry for assayingpharmaceuticals of complex nature andDesign a laboratory protocol for arequested analytical issues.								
2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields	B.9- Make professional decisions in the area of specialization.								
2.2.8- Be creative and innovative	B.10- Show creativity in solving analytical problems.								
2.2.9- Manage discussions and arguments based on evidence and logic.	B.11- Discuss different practical solutions for a given analytical problem.B.12-Justify the conclusions by providing the scientific evidences.								
2.3.1- Master basic and modern professional skills in the area of specialization.	 C.1- Recognize with personal command the recent laboratory techniques in Analytical Chemistry research. C.2- Accomplish advanced techniques and basic concepts of scientific research in pharmaceutical analytical chemistry. 								
2.3.2- Write and critically evaluate professional reports.	 C.3- Write with confidence reliable scientific reports and conclusions in pharmaceutical analysis. C.4- Summarize and display the scientific research without compromising rigorous scientific content. 								
	 2.2.5- Assess hazards and risks in professional practice in his / her area of specialization. 2.2.6- Plan to improve performance in the pharmaceutical area of interest. 2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields 2.2.8- Be creative and innovative 2.2.9- Manage discussions and arguments based on evidence and logic. 2.3.1- Master basic and modern professional skills in the area of specialization. 2.3.2- Write and critically evaluate professional reports. 								

Faculty of Pharmacy

Analytical Chemistry Department

	2.3.3- Evaluate and develop	C.5- Develop and assess novel methods								
	methods and tools existing in the	of analysis of target analytes either in								
	area of specialization.	trace amounts.								
	2.3.4- Properly use technological	C.6- Implement sophisticated analytical								
	means in a better professional	instruments for assay of analytes in								
	practice	complex matrices and biological fluids.								
	2.3.5- Plan to improve professional	C.7. Set a plan for the improvement of								
	practices and to improve the	c. 7- Set a plan for the improvement of								
	performance of other scholars	professionals and researchers.								
	2.4.1- Effective communication in	D.1- Communicate with the groups								
	its different forms	participating in the research project.								
	2.4.2- Efficiently use the									
	information technologies (IT) in	D.2- Acquire advanced computer skills								
	improving the professional	and train on new softwares used for								
	practices	modulicitation and data processing.								
S		D.3- Help your colleagues and								
Skill		coworkers to increase the quality of								
ole S	2.4.3- Help others to learn and	research.								
erat	evaluate their performance.	D.4- Commit to scientific security and								
ansf		disseminate information and provide								
l Tr		counsel and advice.								
anc	2.4.4- Self-assessment and	D.5- Practice self assessment and								
eral	continuous working.	continues working in the field analytical								
Gen		chemistry.								
•	2.4.5- Use various sources to get	D.6- Retrieve information from various								
	information and knowledge.	sources in the field of analytical								
		chemistry.								
	• · · · · · · · · · · ·	D.7- Work effectively as a member of								
	2.4.6- Work as a member and lead	team, and improve leadership skills.								
	a team of workers	Acquire the capacity to lead the team								
		work								

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

2.4.7-Direct scientific meetings and to manage time effectively	 D.8- Arrange for periodical meetings and scientific talks. D.9-Use work hours effectively and put different work plans for different circumstances.
---	--

4-Curriculum Structure and Contents:

a- Program duration: 3-5 years

b- Program structure:

- The PhD program can be completed in 3-5 years.
- The Faculty of pharmacy implements the credit hour system.
- The program is structured as:

<u>1- Courses:</u>

No. of credit hours for program courses:

Special: (3x4) 12

2- Thesis: 30 hours

The candidate must complete a research project on an approved topic in the Pharmaceutical Sciences. To fulfill this requirement the student must present (written and orally) a research proposal and write a thesis.

<u>3- General University Requirements:</u> 10 credit hours

including:

a- TOEFL (500 units)

b- Computer course

Programs and Courses specifications

c-Program Curriculum:

Course	Course Title	Credit	Program						
Code	Course The	hours	ILOs Covered						
	Special Courses:								
Asp4	Chemometric Analysis	4	A2, A3, A6, A8, B1, B3, B9, B11, D2, D3, D5.						
Asp5	Advanced spectroscopy of Analytical chemistry	4	A1, A4, A9, A11, B3, B4, B8, B10, D6, D7, D8, D9.						
Asp6	Chromatographic Analysis of Pharmaceuticals	4	A1, A2, A4, B3, B4, B7, B8, D2, D3, D4.						
	Thesis	30	 A1, A4, A5, A6, A7, A8, A9, A10. B1, B2, B4, B5, B6, B7, B8, B9, B10, B11, B12, C1, C2, C3,C4, C5, C6, C7, D1, D2, D3, D5, D6, D7, D8, D9. 						

5-Program admission requirements:

Applicants are admitted to PhD degree any time throughout the academic year upon fulfillment of the following:

1. The applicants should be holders of Bachelor in Pharmaceutical Sciences from any Faculty of Pharmacy and also finish M.Sc. degree

affiliated to the Egyptian Universities affiliated to the Egyptian Supreme Council of Universities (ESCU).

2. Students should fulfill all the admission requirements stated by the concerned Departmental Board.

Regulations to complete the program:

Conditions of granting the degree

The Faculty Council, in compliance with the concerned Departmental Board as well as Graduate Studies and Research Committee recommendation awards the PhD degree upon fulfillment of the following requirements:

- 1. Carrying out a deep research in the area of specialization for at least two calendar years from the time of registration.
- 2. The student has to succeed in all courses examinations.
- 3. Acceptance of the research thesis by the judges Committee according to statement 104 of universities regulating law.

Cancellation of Registration

The Faculty Board is allowed to cancel registration for PhD programs in the following circumstances:

- 1. Student's failure to pass the course examinations for two times.
- Student's nonattendance or unsatisfactory progress in research work being reported by the advisors to the Departmental Board and forwarded to the Graduate Studies and Research Committee for approval of cancellation.
- 3. Dissertation refusal by the Jury Committee.

Incapability of the student to graduate by the deadlines indicated

6- Admission Policy:

The faculty complies with the admission regulations and requirements of the Egyptian Supreme Council of Universities (ESCU).

7-Student assessment methods:

Method	ILOS
Written exam	Knowledge and Understanding and Intellectual Skills
Oral exam	Knowledge and Understanding ,Intellectual Skills and
	General and Transferable Skills
Activity	Intellectual Skills and General and Transferable Skills
Seminars	Knowledge and Understanding ,Intellectual Skills &
	General and Transferable Skills
Follow up	Professional and practical Skills & General and
	Transferable Skills
Thesis and oral	Knowledge and Understanding, Intellectual Skills,
presentation	Professional and practical Skills & General and
	Transferable Skills

Grade Scale	Grade point average value (GPA)	Numerical scale
A+	5	≥ 95%
A	4.5	90- < 95%
B+	4	85- < 90%
В	3.5	80- < 85%
C+	3	75- < 80%
С	2.5	70- < 75%
D+	2	65- < 70%
D	1.5	60- < 65%

Programs and Courses specifications

8-Failure in Courses:

Students who fail to get 60% (1 point)

9-Methods of program evaluation

Evaluator	Method	Sample
Internal evaluator:	Program evaluation	Program report
Prof. Dr. Hisham Ezzat	Courses evaluation	Courses report
External evaluator:	Program evaluation	Program report
Prof. Dr. Gamal Saleh	Courses evaluation	Courses report
Others methods	Matrix with ARS Questionnaires	The Matrix Results of the questionnaires

Program coordinator

Head of Department

Prof. Dr. Hisham Ezzat

Prof. Dr. Magda El-Henawee

تم اعتماد توصيف البرنامج في مجلس القسم بتاريخ 10 / 2017

	Matrix of PhD program of Analytical chemistry																																							
Program intended learning outcor									g outcomes																															
Pro	gram Courses	Knowledge and understanding												Intellectual skills											Professional and practical skills							General and transferable skills								
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	C1	C2	СЗ	C4	C5	C6	C7	D1	D2	D3	D4	D5	D6	D7	D8	D9
ses	Chemometric analysis		x	x			x		x				x		x						x		x										x	x		x				
cial cour	advanced Spectroscopy	x			x					x		x			x	x				x		x															x	x	x	x
Spec	Chromatographic analysis of pharmaceuticals	x	x		x										x	x			x	x													x	x	x					
Thesis		x			x	x	x	x	x	x	x		x	x		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х

Analytical Chemistry Department

Programs and Courses specifications

Chemometric Analysis

Course specification of Chemometric Analysis

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Chemometric Analysis

Lectures: 4 hrs/week Total: 4 hrs/week Code: Asp4 Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline statistical and chemometrics methods used in analytical chemistry and apply chemometric analysis for different analytical problems.

3. Intended learning outcome s (ILOs) of Chemometric Analysis:

A- K	nowledge and Understanding
<u>.</u>	Describe the design of analytical experiments using in
aı	chemometric analysis.
	Establish an ethical code by maintaining the quality of analytical
a2	measures.
a3	Outline the basic steps toward quality of analytical measurements.
B- In	tellectual skills
h	Apply the proper testing and statistics for determination of
D 1	combination of errors and repeated measurements.
b ₂	Describe the method of choice for the analyte.
h2	Decide the most appropriate experimental design for the analyte of
03	choice.
b4	Discuss different possible methods for the assay of an analyte.
D-G	eneral and transferable Skills
d1	Acquire computer-aided analytical skills such as chemometric and kinetic softwares.
d2	Help your colleagues and coworkers to proceed with a scientific plan and interpret data.
d3	Practice self-assessment and continues working in the field analytical chemistry.

<u>4. Course Contents of Chemometric Analysis:</u>

Week number	Contents
1	Experimental Design and Optimization
	Randomization and blocking
	Two-way ANOVA
	Latin squares and other designs
	Interactions

Analytical Chemistry Department

Faculty of Pharmacy

Programs and	Courses s	pecifications
--------------	------------------	---------------

	Factorial versus one-at-a-time design
	Factorial design and optimization
2	Experimental Design and Optimization
	Optimization: basic principles and univariate
	methods
	Optimization using the alternating variable
	search method
	The method of steepest ascent
	Simplex optimization
	Simulated annealing
3	Calibration Methods in Instrumental Analysis
	Calibration graphs in instrumental analysis
	The product-moment correlation coefficient
	The line of regression of y on x
	Errors in the slope and intercept of the regression
	line
	Calculation of a concentration and its random
	error
	Limits of detection
	The method of standard additions
4	Calibration Methods in Instrumental Analysis
	Use of regression lines for comparing analytical
	methods
	Weighted regression lines4
	Intersection of two straight lines
	ANOVA and regression calculations
	Curve fitting
	Outliers in regression

5	Multivariate Analysis
	Initial analysis
	Principal component analysis
	Cluster analysis
	Discriminate analysis
	K-nearest neighbor method
	Disjoint class modeling
	Multiple regression
6	Multivariate Analysis
	Principal component regression
	Multivariate regression
	Partial least squares regression
	Multivariate calibration
	Artificial neural networks
7	Non-parametric and Robust Methods
	The median: initial data analysis
	The sign test
	The Wald-Wolfowitz runs test
	The Wilcoxon signed rank test
	Simple tests for two independent samples
8	Non-parametric and Robust Methods
	Non-parametric tests for more than two samples
	Rank correlation
	Non-parametric regression methods
	Robust methods
	Robust regression methods
	The Kolmogorov test for goodness of fit

Analytical Chemistry Department

Faculty of Pharmacy

	Activity			
9	Errors in quantitative analysis			
10	Statistics of Repeated Measurements			
	Mean and standard deviation			
	The distribution of repeated measurements			
	The sampling distribution of the mean			
	Confidence limits of the mean for large samples			
	Presentation of results			
	Confidence limits of the geometric mean for a			
	log-normal distribution			
	Propagation of errors			
11	Significance Tests			
	Comparison of an experimental mean with a			
	known value			
	Comparison of two experimental means			
	Paired t-test			
	One-sided and two-sided tests			
	F-test for the comparison of standard deviations			
	Outliers			
	Analysis of variance			
12	Significance Tests			
	Comparison of several means			
	The arithmetic of ANOVA calculations			
	The chi-squared test			
	Testing for normality of distribution			
13	The Quality of Analytical Measurements			
	Sampling			
	Separation and estimation of variances using ANOVA			

Programs and Courses specifications

	Quality control methods
	Stewhart charts
	Establishing the process capability
14	The Quality of Analytical Measurements
	Average run length: cusum charts
	Proficiency testing schemes
	Collaborative trials
	Uncertainty
	Acceptable sampling
15	Revision and open discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Cooperative learning
- Problem solving

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2, b3,b4						
Oral exam to assess:	a1, a2, a3, b1, b2, b3,b4						
Activity to assess:	d1, $d2$ and $d3$						

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

7- References and books:

A-Scientific papers

B: Books: Statistics for the Quality Control Laboratory, Mullins, E.,

(RSC, 2003).

Statistics for Environmental Science and Management, Manly, B. F. J.,

(Chapman & Hall, 2001).

C- Websites:

www.sciencedirect.com

www.Pubmed.com

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

• Course Coordinators: Prof Dr. Hanaa Salah

Prof. Dr. Hisham Ezzat

- Head of Department: Prof. Dr. Magda El-Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

	Matrix I of Chemometric Analysis											
						ILO	S					
	Course Contents	Kn unde	Knowledge and understanding			Intellectual skills				General and Transferable skills		
		a1	a2	a3	b1	b2	b3	b4	d ₁	d ₂	d ₃	
1	Experimental Design and Optimization	х					x					
2	Experimental Design and Optimization	х					x					
	Calibration Methods in Instrumental											
3	Analysis					x		x				
	Calibration Methods in Instrumental											
4	Analysis					x		x				
5	Multivariate Analysis					x		x				
6	Multivariate Analysis					x		x				
7	Non-parametric and Robust Methods					x		x				
0	Non-parametric and Robust Methods								Х	x	x	
0	Activity					x		x				
9	Errors in quantitative analysis		x		x							
10	Statistics of Repeated Measurements				v							
11	Significance Tests				x							
12	Significance Tests			1	x							
13	The Quality of Analytical Measurements			x								
14	The Quality of Analytical Measurements											
15	Revision and open discussion		X	X						─		
15	re rision and open discussion	Х	х	Х	Х	х	Х	X				

	Matrix II of Chemometric Analysis										
ARS		Program ILOs	Course	Course contents	Sources	Teaching and learning methods		Method of assessment			
						Lecture	Self learning	Written exam	I of assessm Oral Acti Exam Acti	Activity	
2. 1	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.2-Have comprehensive knowledge and clear understanding of the theories and advancements in the field of analytical chemistry and related fields A.3- Collaborate with different specializations needed to integrate the research approach used in the plan using chemometric analysis principles.	al	Experimental Design and Optimization	Textbooks, Scientific papers and self learning	x	Х	X	x		

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.3- The ethical and legal principles in pharmacy and academic practices	A.6- Comprehend the ethical aspects required by professionals.	a2	The Quality of Analytical MeasurementsErrors in quantitative analysis	Textbooks, Scientific papers and self learning	X	X	X	x	
	2.1.4- The principles and bases of quality assurance in professional practice in the field of specializations	A.8- Recognize the concepts and basics of laboratory safety and waste disposal.	a3	The Quality of Analytical Measurements	Textbooks, Scientific papers and self learning	X	x	X	X	
2.	2.2.1- Analyze, evaluate the data in his / her specified area, and utilize them in logical inference processes (induction/deductio n).	B.1- Apply the proper testing and calculations for data interpretation.	b1	Errors in quantitative analysisStatistics of Repeated Measurements Significance Tests	Textbooks, Scientific papers and self learning	X	х	X	X	

Analytical Chemistry Department

Faculty of Pharmacy

	2.2.2- Propose solutions to specified problems in the light of the available data (information).	B.3- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples.	b2	Calibration MethodsNon- parametric and Robust MethodsMultivariate Analysis	Textbooks, Scientific papers and self learning	X	X	X	X	
	2.2.7- Take professional decisions and bears responsibility in wide array of pharmaceutical fields	B.9- Make professional decisions in the area of specialization.	b3	Experimental Design and Optimization	Textbooks, Scientific papers and self learning	X	X	X	x	
	2.2.9- Manage discussions and arguments based on evidence and logic.	B.11- Discuss different practical solutions for a given analytical problem.	b4	Calibration MethodsNon- parametric and Robust MethodsMultivariate Analysis	Textbooks, Scientific papers and self learning	x	X	X	X	
2.4	2.4.2- Efficiently use the information technologies (IT) in improving the	D.2- Acquire advanced computer skills and train on new softwares used	d1	Activity						x

Analytical Chemistry Department

Faculty of Pharmacy

professional practices	for instrumentation					
2.4.3- Help others to learn and evaluate their performance.	D.3- Help your colleagues and coworkers to increase the quality of research.	d2	Activity			x
2.4.4- Self- assessment and continuous working.	D.5- Practice self assessment and continues working in the field analytical chemistry.	d3	Activity			х

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

Advanced Spectroscopy of Analytical Chemistry

Course specification of Advanced Spectroscopy of Analytical Chemistry

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major • Department offering the program: Analytical Chemistry.
- Analytical Chemistry.
- Department offering the course:
- Date of specification approval:

<u>1-Basic information:</u>

Title: Advanced Spectroscopy of Analytical Chemistry

Code: Asp5 Lectures: 4 hrs/week Total: 4 hrs/week

Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline principles and procedures of different spectroscopic techniques such as NMR and Mass spectrometry, describe theories and apply studied spectroscopic techniques for the assay and detection of different analysis of pharmaceutical, biological or environmental origin, optimize and validate methods new to analyze professionally different sample components using the studied advanced techniques and Analyze active ingredients in different dosage forms, in biological fluids or of complex nature.

<u>3. Intended learning outcomes (ILOs) of Advanced</u> <u>Spectroscopy of Analytical Chemistry:</u>

A- K	A- Knowledge and Understanding						
ล1	Outline the basis and theory and operation of NMR and Mass and						
uI	tandem mass spectrometry.						
	Apply studied spectroscopic techniques for the assay and detection						
a2	of different analytes of pharmaceutical, biological or						
	environmental origin.						
a3	Describe an advanced technique for assaying analytes of complex						
uc	nature based on previous published and gained information.						
B- In	tellectual skills						
b ₁	Decide the use of the most appropriate instrumental technique in						
~1	pharmaceutical, biological assay or environmental assay.						
b ₂	Integrate the acquired knowledge in compound detection and						
~2	structure elucidation						
b3	Integrate the power of sophisticated techniques for the						
~~	development of novel analytical assay models.						
D-G	eneral and Transferable Skills						
d1	Retrieve information from various sources in the field of analytical						
u	chemistry.						
d2	Work effectively as a member of team, and improve leadership						
u_	skills.						
d3	Optimize work hours, and call for periodical scientific meetings.						

4. Course Content of Advanced Spectroscopy of Analytical Chemistry:

Week number	Contents
1	Spectroscopy
	Introduction
	Theory
2	Classification of spectroscopic techniques

3	Nuclear magnetic resonance spectroscopy (NMR)
	Principals
	Vector Model
4	Nuclear magnetic resonance spectroscopy (NMR)
	Nuclear spin states
	Nuclear magnetic moments
	Absorption of Energy
	Resonance
5	Nuclear magnetic resonance spectroscopy (NMR)
	Chemical shift
	Local diamagnetic shielding
	Spin-spin splitting
6	Nuclear magnetic resonance spectroscopy (NMR)
	Typical ¹ H NMR absorptions by type of compound
7	Nuclear magnetic resonance spectroscopy (NMR)
	Carbon – 13 spectra, including heteronuclear coupling
	with other nuclei.
8	Mass Spectrometry
	Principle
	Mass spectrometer
	Sample introduction
	Activity
9	Mass Spectrometry
	Ionization methods:
	Electron ionization EI
	Chemical ionization CI
	Desorption ionization techniques (SIMS, FAB and
	MALDI)

Programs and Courses specifications

	Electrospray ionization ESI
10	Mass Spectrometry
	Mass analysis
	Detection and Quantification
11	Tandem Mass Spectrometry (MS/MS)
	Introduction
	Scan modes
	Reactions studied in MS/MS
12	Tandem Mass Spectrometry (MS/MS)
	Applications:
	Structure elucidation
	Selective detection
	Ion-molecule reaction
13	Mass spectrometry/ Chromatography coupling
	Coupling techniques: GC/MS, HPLC/MS, CE/MS
	Pharmaceutical, biological and environmental
	applications
14	Revision
15	Open Discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Assignments
- Library visits

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, a3, b1, b2, b3
Oral exam to assess:	a1, a2, a3, b1, b2, b3, b4
Activity to assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers

B- Essential books:

1-Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman, BROOKS/COOL, 2009.

2- Mass Spectrometry, Principles and Applications, Edmond de Hoffmann, Vincent Stroobant, Johns Wiley and Sons Ltd, 2002.

Websites/Journals:

Rapid Communications in Mass Spectrometry

Spectrochemica Acta

Pharmaceutical and Biomedical Analysis

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, computer, data show.

- Course Coordinators: Prof. Dr. Mervat Hosny
- Head of Department: Prof. Dr. Magda El-Henawee
- Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

Matrix I of Advanced Spectroscopy of Analytical Chemistry

		ILOs									
	Course Contents	Knowle unders	Intellectual skills			General and Transferable Skills					
1	Spectroscopy *Introduction *Theory	al	a2	a3	bl	b2	b3	dl	d2	d3	
1	Classification of spectroscopic techniques	X									
2	Classification of spectroscopic techniques	X									
3	NMR :*Principals *Vector Model	x									
4	NMR: *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance	x									
5	NMR: *Chemical shift *Local diamagnetic shielding *Spin-spin splitting	x									
6	Typical 1H NMR absorptions by type of compound	x									
7	Carbon – 13 spectra, including heteronuclear coupling with other nuclei	х									
8	Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction Activity	X						х	х	х	
9	Mass Spectrometry: *Ionization methods	х									
10	Mass Spectrometry: *Mass analysis *Detection and Quantification		x		x						
11	MS/MS: *Introduction *Scan modes *Reactions studied in MS/MS		x		x						
12	MS/MS: *Applications		x	X	x	x	X				
13	Mass spectrometry/ Chromatography coupling: Coupling techniques, Applications		x	X	x	x	X				
14	Revision	X	x	X	x	x	x				
15	Open discussion	x	x	x	x	x	x				

	Matrix II of Advanced Spectroscopy of Analytical Chemistry									
ARS		D H O	Course		G	Teach learning	ing and g methods	Method o	Method of assessment	
		Program ILOs	ILOs	Course contents	Sources	Lecture	Self learning	Written exam	Oral Exam	Activity
2.1	2.1.1- Fundamental and in-depth knowledge and basic theories in the field of specialty and the closely related areas of pharmaceutical sciences	A.1- Illustrate the basis of analytical chemistry and related subjects with additional depth in advanced spectroscopic and chromatographic.	al	Spectroscopy *Introduction *Theory Classification of spectroscopic techniques NMR :*Principals *Vector Model *Nuclear spin states *Nuclear magnetic moments *Absorption of Energy *Resonance *Chemical shift *Local diamagnetic shielding *Spin-spin splitting Typical 1H NMR absorptions by type of compoundCarbon – 13 spectra, including heteronuclear coupling with other nuclei Mass Spectrometry: *Principle *Mass spectrometer *Sample introduction *Ionization methods	Textbooks, Scientific papers and self learning	X	Х	Х	X	

Analytical Chemistry Department

Faculty of Pharmacy

2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.4- Describe the scientific research methodologies, ethics, and professional practice especially in the areas of Chemometry, Spectroscopy and Chromatography.	a2	*Mass Spectrometry: Detection and Quantification *MS/MS: Reactions studied *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	X	X	X	X	
2.1.5- All relevant knowledge concerning the impact of professional practice on society and environment and the ways of their conservation and development	 A.9- Identify the beneficial impact and applications of analytical chemistry towards a safe environment. A.11-Link the different parts to produce a general knowledge serve the research assumptions. 	a3	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	Х	Х	Х	X	
Analytical Chemistry Department

Faculty of Pharmacy

	2.2.2- Propose solutions to specified problems in the light of the available data (information).	 B.3- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological B.4- Solve the problems which obstacle to research plan and results 	b1	*Mass Spectrometry: Detection and Quantification *MS/MS: Reactions studied *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	X	X	X	x	
2.2	2.2.6- Plan to improve performance in the pharmaceutical area of interest.	B.8- Integrate the gained knowledge of analytical chemistry for assaying pharmaceuticals of complex nature and Design a laboratory protocol for a requested analytical issues.	b2	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and self learning	Х	X	X	X	
	2.2.8- Be creative and innovative	B.10- Show creativity in solving analytical problems.	b3	MS/MS: Applications *Mass spectrometry/ Chromatography coupling	Textbooks, Scientific papers and	Х	x	X	X	

Analytical Chemistry Department

Faculty of Pharmacy

					self learning			
2.4	2.4.5- Use various sources to get information and knowledge.	D.6- Retrieve information from various sources in the field of analytical chemistry.	d1	Activity				Х
	2.4.6- Work as a member and lead a team of workers	D.7- Work effectively as a member of team, and improve leadership skills. Acquire the capacity to lead the team work	d2	Activity				Х
	2.4.7-Direct scientific meetings and to manage time effectively	 D.8- Arrange for periodical meetings and scientific talks. D.9-Use work hours effectively and put different work plans for different circumstances. 	d3	Activity				Х

Analytical Chemistry Department

Programs and Courses specifications

Chromatographic Analysis of Pharmaceuticals

Course specification of Chromatographic Analysis of Pharmaceuticals

A- Course specifications:

- Program on which the course is given: Ph.D. of Pharmaceutical Sciences
- Major or Minor element of program: Major
- Department offering the program: Analytical Chemistry.
- Department offering the course: Analytical Chemistry.
- Date of specification approval:

<u>1- Basic information:</u>

Title: Chromatographic Analysis of Pharmaceuticals

Code: Asp6 Lectures: 4 hrs/week Total: 4 hrs/week

Credit hours: 4 hrs/week

<u>2- Overall aim of the course:</u>

On completion of the course, the students will be able to outline practical ways of using chromatographic techniques for solving chemical problems qualitatively and quantitively and describe theories and applications of different chromatographic techniques.

<u>3. Intended learning outcomes (ILOs) of Chromatographic</u> <u>Analysis of Pharmaceuticals:</u>

A- K	nowledge and Understanding						
ูล1	Outline the basis, theory and operation of chromatographic						
uI	analysis.						
a2	Describe the pharmaceutical and biological applications of						
·	chromatographic techniques.						
B- In	tellectual skills						
b ₁	Assess the problems encountered during analytical procedures.						
b ₂	Implement and apply safety measures all through analytical						
~ 2	procedures.						
	Integrate the information and knowledge gained from the course in						
b3	developing new sensitive analytical methods using appropriate						
	reagents for the determination of different compounds.						
D-G	eneral and transferable Skills						
d1	Acquire computer-aided analytical skills such as chemometric and kinetic softwares.						
d2	Help your colleagues and coworkers to proceed with a scientific plan and interpret data.						
d3	Successfully work with other team members and other research group.						

4. Course Contents of Chromatographic Analysis of Pharmaceuticals:

Week number	Contents
1	General aspects of chromatography
	General concept of analytical chromatography
	The chromatogram
	Column efficiency
	Retention parameters
2	General aspects of chromatography
	Optimization of chromatographic analysis
	Classification of analytical techniques.

	Problems
	Safety Measures all through the analytical process
3	Gas Chromatography
	Components of GC installation.
	Carrier gas and flow regulation.
	Sample introduction and the injection chamber
	Thermostatically controlled oven
	Columns
	Stationary Phases
4	Gas Chromatography
	Principal gas chromatographic detectors.
	Retention indexes and stationary phase constants
	problems and applications
5	High performance liquid chromatography
	The beginnings of HPLC.
	General concept of HPLC system.
	Pumps and gradient elution.
	Injectors.
	Columns.
6	High performance liquid chromatography
	Stationary phases.
	Mobile phases.
	Paired ion chromatography.
	Principal detectors.
	Applications and problems.
7	Ion chromatography
	Basics of ion chromatography
	Stationary phases

	Mobile phases.					
	Conductivity detectors.					
8	Ion Chromatography					
	Areas of the peaks and data treatment.					
	External standard method					
	Internal standard method					
	Problems and applications.					
	Activity					
9	Thin layer chromatography					
	Principle of TLC.					
	Characteristics of TLC.					
	Stationary phases.					
	Separation and retention parameters.					
	Quantitative TLC.					
	Problems.					
10	Supercritical fluid chromatography					
	Supercritical fluids.					
	Instrumentation.					
	SFC in chromatographic techniques.					
11	Size exclusion chromatography					
	Principle of SEC					
	Stationary and mobile phases.					
	Instrumentation and applications.					
12	Capillary electrophoresis and					
	electrochromatography					
	Principal					
	Instrumentation					
	Capillary electrochomatography					

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

	Problems and applications
13	Planar chromatography
	Introduction
	Materials and techniques
	Detection
	Method development*Applications
14	Revision and open discussion
15	Revision and open discussion

<u>5- Teaching and Learning Methods:</u>

- Lectures
- Self learning
- Open discussion
- Practical problem solving
- Troubleshooting

<u>6- Student Assessment methods:</u>

Written exams to assess:	a1, a2, b1, b2, b3
Oral exam to assess:	a1, a2, a3, b1, b2, b3, b4
Activity to assess:	d1, d2 and d3

Assessment schedule:

Assessment (1): Activity	Week 8
Assessment (2): Written exam	Week 16
Assessment (3): oral exam	Week 16

Weighting of Assessment:

Assessment method	Marks	Percentage
Activity	10	10 %
• Written exam	75	75 %
• Oral exam	15	15 %
TOTAL	100	100%

<u>7- References and books:</u>

A-Scientific papers B- Essential books:

1-Chemical Analysis, Modern Instrumentation Methods And

Techniques, Francis Rouessac, and Annick Rouessac, John Wiley and

Sons, Ltd, 2007.

2- Chromatographic analysis of pharmaceutics, John A. Adamovics,

Marcel Dekker, 1997.

Websites/Journals:

www.sciencedirect.com

Journal of Chromatography A and B

Chromatographia

Journal of Liquid Chromatography

www.tandfonline.com/toc/lanl20/current (Analytical Letters)

www.rsc.org

Facilities required for teaching and learning:

For lectures: Black (white) boards, data show.

- Course Coordinators: Prof. Dr. Wafaa Hassan
- Head of Department: Prof. Dr. Magda El-Henawee Date:

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017

Matrix I of C	Chromatographic	Analysis of Pha	armaceuticals
---------------	------------------------	------------------------	---------------

Course Contents		ILOs							
		Knowledge and understanding		Intellectual skills			General and transferable Skills		
		a1	a2	b1	b2	b3	d1	d2	d3
1	General aspects of chromatography:*General concept of analytical chromatography *The chromatogram *Column efficiency *Retention parameters	x							
2	General aspects of chromatography: *Optimization of chromatographic analysis *Classification of analytical techniques. *Problems *Safety Measures all through the analytical process	X	X	x	x	X			
3	GC *Components of GC installation *Carrier gas and flow regulation. *Sample introduction and the injection chamber *Thermostatically controlled oven *Columns *Stationary Phases	x							
4	GC: *Principal gas chromatographic detectors. *Retention indexes and stationary phase constants *problems and applications	x	X	X		X			
5	HPLC: *The beginnings of HPLC *General concept of HPLC system *Pumps and gradient elution *Injectors *Columns	X							
6	HPLC: *Stationary phases *Mobile phases *Paired ion chromatography *Principal detectors *Applications and problems	X	X	x		X			
7	Ion chromatography *Basics of ion chromatography *Stationary phases *Mobile phases *Conductivity detectors	X							
8	Ion Chromatography: * Areas of the peaks and data treatment *External standard method *Internal standard method *Problems and applications Activity	x	X	X		X	x	X	X

Analytical Chemistry Department

Faculty of Pharmacy

	TLC: * Principle *Characteristics of TLC								
9	*Stationary phases *Separation and retention	x	Х	X		х			
	parameters *Quantitative TLC *Problems								
10	SFC: * Supercritical fluids *Instrumentation								
10	*SFC in chromatographic techniques.	X							
	SEC: *Principle of SEC *Stationary and								
11	mobile phases *Instrumentation and	х	Х	Х		х			
	applications								
	CE and electrochromatography * Principal								
12	*Instrumentation *Capillary	x	x			X			
	electrochomatography *Problems and			x					
	applications								
	Planar chromatography: *								
	Introduction*Materials and techniques								
13	*Detection *Method development	X	X	х		х			
	*Applications								
14	Revision and open discussion	x	X	x	X	X			
15	Revision and open discussion	x	Х	x	x	X			
	Activity						х	X	X

	Matrix II of Chromatographic Analysis of Pharmaceuticals									
ARS		Program ILOs	Course	Course contents	Sources	Teaching and learning methods		Method of assessment		
			ILUS			Lecture	Self learning	Written exam	Oral Exam	Activity
		A.1- Illustrate the								
		basis of analytical								
	2.1.1-	chemistry and related								
	Fundamental	subjects with		General aspects of chromatographyGCHPLC						
	and in-depth	additional depth in								
	knowledge and	advanced			Taythooks					
	basic theories in	spectroscopic and		-Ion ChromatographyTLC	Scientific					
2.1	the field of	chromatographic.	a1	SFCSECCapillary	Scientific	х	Х	х	х	
	specialty and the	A.2-Have		electrophoresis and	solf loorning					
	closely related	comprehensive		electrochromatographyPlanar	sen learning					
	areas of	knowledge and clear		Chromatography						
	pharmaceutical	theories and								
	sciences	advancements in the								
		field of analytical								
		chemistry and related								
		fields							1	

Analytical Chemistry Department

Faculty of Pharmacy

	2.1.2- Fundamentals, methods, techniques, tools and ethics of scientific research	A.4- Describe the scientific research methodologies, ethics, and professional practice especially in the areas of Chemometry, Spectroscopy and Chromatography.	a2	General aspects of chromatographyGCHPLC -Ion ChromatographyTLC SECCapillary electrophoresis and electrochromatography Planar Chromatography (Problems and Applications)	Textbooks, Scientific papers and self learning	X	X	X	X	
2.2	2.2.2- Propose solutions to specified problems in the light of the available data (information).	 B.3- Suggest the most appropriate analytical technique for assaying the pharmaceutical or biological samples. B.4- Solve the problems which obstacle to research plan and research results 	b1	General aspects of chromatographyGCHPLC -Ion ChromatographyTLC SECCapillary electrophoresis and electrochromatography Planar Chromatography (Problems and Applications)	Textbooks, Scientific papers and self learning	х	Х	X	X	

Faculty of Pharmacy

	2.2.5- Assess	B.7- Recognize								
	hazards and	possible hazards and								
	risks in	biohazards during								
	professional	conducting research	b2	safety Measures all through					х	
	practice in his /	and routine work		analytical process						
	her area of	and how to deal								
	specialization.	with them safely.								
		B.8- Integrate the								
		gained knowledge								
		of analytical		General aspects of						
	2.2.6- Plan to	chemistry for		chromatographyGCHPLC	Touthools	Taythooks				
	niprove	assaying		-Ion ChromatographyTLC	Scientific					
	the	pharmaceuticals of	b3	SECCapillary electrophoresis	papers and X	х	х	х	х	
	pharmaceutical	complex nature and		and electrochromatography	self learning					
	area of interest.	Design a laboratory		Planar Chromatography						
		protocol for a		(Problems and Applications)						
		requested analytical								
		issues.								

Analytical Chemistry Department

Faculty of Pharmacy

	2.4 2.4.2- Efficiently use the information technologies (IT) in improving the professional practices	D.2- Acquire computer skills such as internet, word processing, chemometric and kinetic softwares.	d1	Activity			Х
	2.4.3- Help others to learn and evaluate their performance.	 D.3- Help your colleagues and coworkers to increase the quality of research. D.4- Commit to scientific security and disseminate information and provide counsel and advice. 	d2	Activity			x
2.4	2.4.1- Effective communication in its different forms	D.1- Communicate with the groups participating in the research project.	d2	Activity			Х

Analytical Chemistry Department

Programs and Courses specifications

Thesis Specification

Programs and Courses specifications

Thesis Specification of PhD Degree

A-Thesis specifications:

- **Program on which the course is given:** PhD of Pharmaceutical sciences (Analytical chemistry)
- Major or Minor element of program: Major
- Department offering the program: Analytical chemistry Dept.
- **Department offering the thesis:** Analytical chemistry Dept.
- Date of specification approval:
- 1- Basic information:
- Title: PhD Thesis in Analytical chemistry
- Credit hours: 30 hrs

<u>2- Overall aim of the thesis:</u>

On completion of the thesis, the students will be able to identify and perform advanced and accurate analytical techniques and methods used in the experimental work according to the designed protocol, critique own and other work, successfully write research articles for international publication, present his/her results in scientific meetings and conferences, derive and interpret the results of the study from the data collected, draw conclusions about the contribution to knowledge made by the study which may be concerned with the problem under investigation, the methods deployed or the student as a researcher.

<u>3- Intended learning outcome's (ILOs):</u>

Know	ledge and Understanding
1	Outline different principles of analytical chemistry and their
al	possible application in the research study
	Demonstrate methods and techniques used during working in the
a2	area of specialization of research
	Understand the legal aspects of for professional and academic
a3	practices
	Illustrate the importance of quality assurance during the analysis
a 4	of different drugs
_	Define different practices that can be used in understanding the
a5	problem of the research and help in solving it
Intell	ectual skills
	Solve problems related to practical work by obtained quantitative
b1	data from the practical work
	Discuss professional problems and suggest solutions rely on
62	knowledge and recent information
b3	Plan a research in the research field
	Integrate scientific results and write report following conducting
b4	research
b5	Manage risks and hazards related to professional practical area
	Outline principles that should be followed in research to develop
b6	laboratory performance
b7	Decide what to do with full responsibility in scientific research
	Demonstrate creativity and innovation in modifying techniques
bð	and in utilization of various therapy.
Profe	ssional and practical skills

Analytical Chemistry Department

Faculty of Pharmacy

Programs and Courses specifications

c1	Apply different techniques related to practical thesis work.				
c2	Use and evaluate practical data to write report				
c3	Estimate laboratory techniques used in analytical chemistry. Develop methods of assay of various parameters				
c4	Use IT skills in collecting information, presenting results and writing thesis				
c5	Improve laboratory techniques.				
Gener	General and Transferable skills				
d1	Interact with health care professional.				
d2	Use information technology in review and thesis preparation				
d3	Set rules for evaluation and judge others performance.				
d4	Study independently and evaluate learning needs in analytical chemistry.				
d5	Use up-to-date information in analytical chemistry.				
d 6	Implement tasks as a member of a team.				
d7	Utilize time effectively to achieve goals				

4. Thesis Content:

Steps	Content
1^{st}	Suggest the possible points/ problems of research that the candidate can
	work on in the frame of the aim of work and choose proper point related
	to the problems of the community and surrounding environment.
	Collect all available information about this subject by all possible means.
	Use internet, journals, books and others thesis to get previous and recent information about the subject understudy.
	Design the protocol including the steps of work following the suitable timetable.

	Increase the awareness of the recent biochemical and analytical
	techniques that will be used during practical work and determined by
	the protocol.
	Integrate different knowledge (analytical chemistry, pharmaceutical and organic chemistry knowledge, biostatistics,) to solve suggested problem.
	Continuous evaluation to the thesis outcome according to the schedule.
2 nd	Identify different practical techniques and methods to assess biochemical parameters related to the subject under study.
	Operate scientific instruments according to instructions.
	Evaluate and manage hazards (chemical) throughout the whole practical work.
	Organize the experimental work according to the designed protocol (either parallel or sequential experiments).
	Separation of samples for qualitative and quantitative determination and assay.
	Understand any legal aspects related to the thesis work.
3 rd	Collect raw data for the tested biochemical parameters.
5	Interpret raw data to get valuable information.
	Perform statistical analysis and biological correlation for the results.
	Present and describe the results graphically.
	Suggest solution to the problem understudy based on this presented data.
	Modify methods for analysis of samples
4^{th}	- Communicate with supervisors to discuss results
	Work effectively as a member of a team (e.g. Supervisors, various professionals and Technicians).

Present the results periodically in seminars.

Write scientific reports on the obtained results with conclusive significance.

Discuss obtained results in comparison with pervious literatures.

Suggest possible recommendations based on the outcome of the thesis and decide future plans.

Summarize the thesis in an understandable Arabic language for non professionals.

Write references in the required form (Thesis, Paper.....).

Demonstrate the thesis in a final power point presentation.

Continue self-learning throughout the experimental work and writing scientific papers.

5- Teaching and Learning Methods:

- Self learning (Activities, Research....)
- Research group meetings
- Departmental seminars
- Instrumental troubleshooting
- Investigation and problem solving

6- References:

Websites: Pubmed, Sciencedirect, Weilyinterscience

International Journals such as: J. Chromatography B, Drug Testing

and Analysis, Analytical Chemistry.

Books:

- How to Write A Thesis, By Murray, Rowena, McGraw-Hill International, 3rd edition 2011.
- Authoring a PhD: How to Plan, Draft, Write and Finish a Doctoral Thesis or dissertation, By Patrick Dunleavy, 2003.

Facilities required:

 For practical work: U.V spectrophotometer, Sonicator, Colorimeter, Flouremeter, HPLC-UV, Atomic Absorption Spectrometer, GC-FID

Head of Department: Prof. Dr. Magda El-Henawee

تم اعتماد توصيف المقرر في مجلس القسم بتاريخ 10 / 2017